
Faculty Of Graduate Studies

Mathematics Program

Chaos In Topological Spaces

Prepared by
Tasneem Hamza

Supervised by
Prof. Mohammad Saleh

M. Sc. Thesis
Birzeit University

Palestine

2014



Chaos In Topological Spaces

Prepared By

Tasneem Hamza

Master in Mathematics, Birzeit University, 2014

Supervised By

Prof.Mohammad Saleh

Mathematics Department, Birzeit University
Palestine

2014

This thesis was submitted in fulfillment of the requirements for the
Master’s Degree in Mathematics from the Faculty of Graduate Studies at

Birzeit University, Palestine.

2



Chaos In Topological Spaces

Prepared By

Tasneem Hamza

This thesis was defended successfully on June 11, 2014. And approved
by:

Committee Members Signature

1. Prof. Mohammad Saleh Head Of Committee . . . . . . . . . . . . . . .

2. Dr. Reema Sbeih Internal Examiner . . . . . . . . . . . . . . .

3. Dr. Marwan Aloqeili Internal Examiner . . . . . . . . . . . . . . .

3



Dedication
First of all, my enormous debt of gratitude goes to my thesis Supervisor and
mentor, Professor Mohammad Saleh. I am especially thankfull to him for
his mentorship and guidance throughout the period of my thesis. I would
like also to thank my thesis defense committee members for their valuable
comments and suggestions.

I would like to express my sincere gratitude to my family for their support
and patience, I especially dedicate this Thesis to the soul of my loving Uncle,
Mr. Yaser Hamza for inspiring me to pursue my graduate studies. His
devotion to his teaching work and students was a distinguished example
influenced me through my life and university studies. I would like to express
my special feeling of gratitude for my husband, Dr. Muhsen Owaida, for his
unwavering encouragement and valuable counsel through my thesis work.

4



Declaration
I certify that this thesis, submitted for the degree of Master of Math-

ematics to the Department of Mathematics at Birzeit University, is of my
own research except where otherwise acknowledged, and that this thesis (or
any part of it) has not been submitted for a higher degree to any other
university or institution.

Tasneem Hamza Signature . . . . . . . . . . . .

June 30, 2014

5



Abstract

Chaos theory has been at the forefront of research in the last few decades.
In this research, we study chaos theory and various definitions of chaos,
especially Devaney’s definition of chaos. We propose a generalization of De-
vaney’s chaos in metric spaces onto topological spaces. We also propose a
relaxation on Devaney’s definition conditions and study the effect of such
relaxation on chaos definition. At last, we study the application of chaotic
maps in hash functions and propose a new method for hash function con-
struction using the Double chaotic map.



ملخص

 برزت نظرية الفوضى في طليعة البحوث في العقود القليلة الماضية. في هذا البحففث، نففدرس نظريففة الفوضففى وتعريفففات
  لنظريففة الفوضففى فففيديفاني لنظرية الفوضى.في هذا البحث نقترح تعميما لتعريف ديفانيمختلفة لها، وخاصة تعريف 

  وقمنففا بدراسففةديفانيالفضاءات المترية على الفضاءات الطوبوغرافية. نحن أيضا قمنا بعمل بعض التعديلت تعريففف 
 تأثير  هذه التعديلت على تعريف نظرية الفوضى. في النهاية، قمنا بدراسة تطبيقات الدالت الفوضوية في تطبيقففات أمففن

الحاسوب والمعلومات، وخصوصا نستخدم الدالة الفوضوية المزدوجة.
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1 Introduction

1.1 History of Chaos Theory

Chaos theory is the science of describing the behavior of dynamical systems,
it has been of significant interest in the last few decades. Applications of
chaos theory span several fields of science like astronomy, biology, metrol-
ogy, population, and economics. First encounters of chaotic behavior were
mentioned in the work of Henri Poincaré in his study of the n-body prob-
lem in the 1880s. According to Poincaré, long-term unpredictability makes
determinism and randomness somewhat harmonious. Poincaré found that
if we have the exact laws governing the universe state, and we know the
accurate initial state of the universe, then we can predict precisely the fu-
ture state of the universe. But, even a very small error in approximating
the initial state, will lead to random phenomenon and make the future state
of the universe unpredictable, this was the first encounter of sensitivity to
initial conditions.

Edward Lorentz is considered the official discoverer of chaotic behavior
and chaos theory. In 1961, he first encountered the phenomenon during his
experiments and calculations on predicting weather forcasts using nonlin-
ear dynamical models. During his time, it was known among mathemati-
cians that small variations in calculations produce small difference in results.
What happened is that during the first trial of experiments he used 6-digit
numbers, and during a second trial of experiments, he used 3-digit numbers
which did not provide the same solutions. The work of Lorentz coined the
term ”Butterfly effect”, which means flapping of a butterfly wings today
may produce a storm after a period of time [22].

The term chaos was first introduced in the paper of the mathematician
James A. Yorke titled ”Period Three Implies Chaos”. Yorke defined the
chaotic function and proved that for continuous map f on a closed interval
I, if there exists periodic point in I of period 3 then f is a chaotic function.

In 1976, the biologist Robert M. May introduced the logistic map as a
simple equation with complex dynamics. Mitchell Jay Feigenbaum used the
logistic map to demonstrate the transition between regular dynamics and
chaos.
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During the last few decades, research in chaotic dynamical systems flour-
ished and has gotten a lot of interest. At the close of the eighties, Robert L.
Devaney published his popular book ”An Introduction to Chaotic Dynami-
cal Systems”, making chaos theory popular that it entered universities as a
course in dynamical systems. In 1989, Devaney published his definition of
chaotic functions in metric spaces laying the basis for future definitions of
chaos.
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1.2 Basic Definitions

In this section we quote some definitions that will be used in the following
chapters.

Definition. 1.2.1. Let f : X → X be a function. A point x ∈ X is called a
periodic point of f if there exists a natural number n such that fn(x) = x.
We denote the set of periodic points of the function f by P (f).

Definition. 1.2.2. Let f : X → X be a function. A point x ∈ X is
called a recurrent point of f if there exists a sequence nk such that fnk(x)
converges to x.
We denote the set of recurrent points of the function f by R(f).

Definition. 1.2.3. Let f : X → X be a function. The orbit of x denoted
by O(x), is defined to be O(x) = {fn(x)|n ≥ 0}.

Definition. 1.2.4. A Gδ-set is a subset of a topological space that is a
countable intersection of open sets.

Definition. 1.2.5. A point x ∈ X is called a transitive point if O(x) = X.
We denote the set of all transitive points by Trf .

Definition. 1.2.6. A subset S of X is called a residual set if it contains
a dense Gδ-set.

Definition. 1.2.7. The ω-limit set of x ∈ X, denoted by ω(x), is the set
of cluster points of the orbit {fn(x)}n∈N.

Definition. 1.2.8. Let X be a metric space and let f : X → X be a
continuous map. Then:

1. If for every pair of nonempty open subsets U and V in X, there is
a positive integer n such that fn(U) ∩ V 6= φ then f is called UV -
topologically transitive.

2. If there is a point x0 ∈ X such that the orbit of x0 is dense in X, then
f is called OX-topologically transitive.

Throughout the text when we say a function f is transitive we mean
UV-topologically transitive.
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Definition. 1.2.9. Let X be a metric space with metric d and let f : X →
X be a continuous map. We say that f has sensitive dependence on
initial conditions if there exists δ > 0 such that for any x ∈ X and for
any open neighborhood Bε(x) of x where ε > 0, there exists y ∈ Bε(x) and
n ≥ 0 such that

d(fn(x), fn(y)) ≥ δ.
Definition. 1.2.10. A subset A of a topological space X is called a dense
set in X if for all x ∈ X either x ∈ A or it is a limit point of A. Equivalently,
a subset A of a topological space X is called a dense set in X if for all x ∈ X
and any neighborhood U of x, U ∩A 6= φ.

Definition. 1.2.11. A nowhere dense set in a topological space is a set
whose closure has empty interior.

Definition. 1.2.12. A function f : X → Y between two topological spaces
(X, τX) and (Y, τY ) is callled a homeomorphism if it has the following
properties :

1. f is a bijection (one to one and onto).

2. f is continuous.

3. The inverse function f−1 is continuous.

Definition. 1.2.13. We say that X is isomorphic to Y if there exists a
function f : X → Y such that

1. f is a homeomorphism.

2. f is onto.

3. f is one to one.

Definition. 1.2.14. A topological space X is compact if any open cover
of X has a finite subcover.

Definition. 1.2.15. A topological space X is perfect if it has no isolated
points.

Definition. 1.2.16. A topological space X is seperable if it contains a
countable dense subset.

Definition. 1.2.17. A metric space is called complete if every Cauchy
sequence in X converges in X.

Definition. 1.2.18. A Baire Space is a topological space such that the
intersection of any countable collection of open dense sets in the space is
also dense.
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Definition. 1.2.19. Consider the continuous and differentiable map f :
R→ R. Then the map f is said to be expanding if |f ′(x)| > 1; for all x ∈ R.

Definition. 1.2.20. A metric space (X, d) is totally bounded if and only
if for every real number ε > 0, there exists a finite collection of open balls in
X of radius ε whose union contains X.

Definition. 1.2.21. Let X and Y be topological spaces, and let f : X → X
and g : Y → Y be continuous functions. We say that f is topologically
conjugate to g if there exists a homeomorphism h : Y → X such that f ◦h =
h ◦ g.

Definition. 1.2.22. Hausdorff space or T2 space is a topological space
in which distinct points have disjoint neighbourhoods.

Definition. 1.2.23. A metric on a set X is a function d : X×X → R that
satisfies the following properties:

1. d(x, y) > 0 for all x, y ∈ X.

2. d(x, y) = 0 if and only if x = y.

3. d(x, y) = d(y, x) for all x, y ∈ X.

4. d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X.

Definition. 1.2.24. Let X be a metric space. If S ⊆ X and d ∈ [0,∞), the
d-dimensional Hausdorff content of S is defined by

CdH(S) := inf
{∑

i

rdi : there is a cover of S by balls with radius ri > 0
}
.

Definition. 1.2.25. The Hausdorff dimension of X is defined by

dimH(X) := inf{d ≥ 0 : CdH(X) = 0}.

For example, the Hausdorff dimension of the circle S1 is 1 and the Haus-
dorff dimension of the Euclidean space Rn is n.

Note that, the metric dimension that used in this research refers to Haus-
dorff dimension.
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1.3 Research Objectives and Contributions

Devaney’s definition of chaos has been a major step in defining chaos in
metric spaces. Many definitions have been introduced for chaos in metric
spaces. On the other hand, chaos in topological spaces attracted very few
researchers. In this thesis, our contribution is threefold:

1. We look into developing new definition of chaos in topological spaces.
We provided a generalization of Devaney’s definition of chaos in metric
spaces onto topological spaces.

2. We proposed some modifications on Devaney’s definition conditions
by weakening them and testing if the definition is still valid.

3. At last, we proposed a new method for building hash functions using
the Double chaotic map.

We currently working on submitting our contribution in this thesis as a
journal paper [16].

1.4 Thesis Structure

The structure of the thesis is as follows:

Chapter2 introduces Devaney’s definition and study its conditions. Then
it presents D-Chaos definition.

Chapter3 studies transitivity and discusses some crosslinks, and proper-
ties that could imply transitivity.

Chapter 4 introduces our main contribution in this thesis; generalization
of Devaney’s definition on topological spaces and relaxation of Devaney’s
definition conditions.

Finally, in Chapter 5 we study hash functions as an application for
chaotic maps and propose a new method for building hash functions using
the Double chaotic map.
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2 Chaos in Metric Spaces

We first talk about Devaney’s definition of chaos in metric spaces and con-
sider the redundancies in the definition.

2.1 Devaney’s Definition of Chaos

Let X be a metric space. A map f : X → X is said to be chaotic on X if :

1. f is transitive.

2. The set of periodic points is dense.

3. f has sensitive dependence on initial conditions.

Banks et al. proved that for a continuous map in any metric space X,
conditions(1) and (2) imply (3) as they proved in [4, Theorem 1].

Theorem. 2.1.1. [4, Theorem 1] Let X be a metric space and let f : X →
X be a continuous map. If f is transitive and the periodic points are dense
in X then f has sensitive dependence on initial conditions.

Proof. Notice that there exists δ0 > 0 such that we can find two periodic
points p1 and p2 where their orbits are disjoint with distance more than δ0.
Let t, s be any positive numbers such that:

d(f t(p1), x) + d(f s(p2), x) ≥ d(f t(p1), f
s(p2)) ≥ δ0

If d(f t(p1), x) ≤ δ0
2

then d(fs(p2), x) ≥ δ0
2

and If d(f s(p2), x) ≤ δ0
2

then

d(f t(p1), x) ≥ δ0
2

.

So there exists a periodic point say p3 such that the distance between the

orbit of p3 and any point x ∈ X is at least
δ0
2

.

That is d(x, f t(p3)) ≥
δ0
2
, for all t ∈ Z+

Now, suppose δ =
δ0
8

and let x ∈ X and N be any neighborhood of X.

Suppose U = N ∩Bδ(x) where Bδ(x) = {y ∈ X | d(y, x) < δ}.
So U is a nonempty open set since it is the intersection of two open sets

and there exists p ∈ U where p is a periodic point of order n. Set

V =
n⋂
i=0

f−i(Bδ(f
i(p3)))
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So V is a nonempty open set since it is the intersection of a finite collection
of open sets and p3 ∈ V . But f is transitive so for any two nonempty open
sets U and V there exists y ∈ U such that fk(y) ∈ V where k is a nonnegative
integer.

Now, let m ∈ Z+ such that
1

n
+
k

n
≤ m ≤ 1 +

k

n
. Then 1 ≤ mn− k ≤ n

and fmn(p) = p. Also,

fmn(y) = fmn−k(fk(y)) ∈ fmn−k(V ) ⊆ Bδ(fmn−k(p3))

This implies that

d(x, fmn−k(p3)) ≤ d(x, p) + d(p, fmn(y)) + d(fmn(y), fmn−k(p3))

Notice that:

1. d(x, p) < δ, since p ∈ Bδ(x) and p ∈ U.

2. d(fmn(y), fmn−k(p3)) ≤ δ, since fmn(y) ∈ Bδ(fmn−k(p3))

3. d(x, fmn−k(p3)) ≤
δ0
2

= 4δ

It follows that

4δ ≤ d(p, fmn(y)) + 2δ =⇒ d(p, fmn(y)) > 2δ

This means

2δ < d(p, fmn(y)) < d(p, fmn(x)) + d(fmn(x), fmn(y))

Then, d(p, fmn(x)) + d(fmn(x), fmn(y)) > 2δ

So d(p, fmn(x)) > δ or d(fmn(x), fmn(y)) > δ

In either of these cases we can find points p and y in N such that
d(p, fmn(x)) > δ or d(fmn(x), fmn(y)) > δ, so f has sensitive dependence
on initial conditions.

In [27], Vellekoop and Berglund proved that on intervals, transitivity
implies chaos in the sense of Devaney. Before we give the proof of this
theorem, consider the following lemma that we need for the proof.
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Lemma. 2.1.1. [27, Lemma 1] Suppose that I is an interval and f : I → I
is a continuous map. If J ⊂ I is an interval which contains no periodic
points of f and z, fm(z), and fn(z) ∈ J with 0 < m < n, then either
z < fm(z) < fn(z) or z > fm(z) > fn(z).

Proof. Suppose not, i.e there exists z ∈ J such that z < fm(z) and fm(z) >
fn(z) where 0 < m < n, and J is an interval that has no periodic points.

Consider the function h(x) = fm(x) this means that z < h(z) and we
claim that z < h(z) < hr+1(z) for all r ∈ Z+ and then the assumption is not
true, so the lemma holds. We prove the claim above by induction, assume
z < h(z) < hr(z) to show that z < h(z) < hr+1(z), suppose it is not true
i.e h(z) > hr+1(z) for some r ∈ Z+, let g(x) = hr(x) − x on the interval
[z, h(z)] then by induction hypothesis g(z) = hr(z)− z > 0 and

g(h(z)) = hr(h(z))− h(z)

= hr+1(z)− h(z) < 0

Now, by the Intermediate Value Theorem there exists c ∈ (z, h(z)) such that
g(c) = 0 so hr(c) = c and then f rm(c) = c is a periodic point in J .

On the other hand let r = n−m > 0 then z < h(n−m)m(z) < fm(z) since
fn−m(fm(z)) < fm(z).

Now, consider the function k(x) = f (n−m)m(x)−x on the interval [z, fm(z)]
then k(z) > 0 and k(fm(z)) < 0. Again by the Intermediate Value Theorem
there exists t ∈ (z, fm(z)) such that f (n−m)m(t) = t, this means that there
is a periodic point t in J which contradicts the assumption.

Now we give the theorem and its proof.

Theorem. 2.1.2. [27, Theorem 1] Let I be an interval and let f : I → I be
a continuous map. If f is transitive then the periodic points of f are dense
in I and f has sensitive dependence on initial conditions.

Proof. Suppose that f is transitive. So by Theorem 2.1.1 it suffices to show
that the periodic points of f are dense in X.

Assume not, there exists an open interval J ⊆ I such that J has no
periodic points. Let x ∈ J be any point in J .
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Let N be a neighborhood of x such that N ⊂ J and let E be an open set
in J/N . Now, by the transitivity of f , for any two nonempty sets J and E,
there exists y ∈ J such that fm(y) ∈ E, where m is a nonnegative integer.
J has no periodic points so y 6= fm(y).

Let ε = d(y, fm(y)) and let U ′ = {x|d(x, y) < ε/3} be a neighborhood of
y, V = {z|d(z, fm(y)) < ε/3} be a neighborhood of fm(y) then U ′

⋂
V = φ.

Now, f is continuous then fm is also continuous and so for any neighborhood
V of fm(y) in I there exists a neighborhood U of y in I such that fm(U) ⊆ V .
Consider two cases

Case 1: If U ⊆ U ′.

Then U
⋂
fm(U) = φ. Again, f is transitive, so there exists z ∈ U

such that fn(z) ∈ U , where n > m. Finally, there exists 0 < m < n and
z, fn(z) ∈ U , but fm(z) /∈ U , so this contradicts the Lemma 2.1.1.

Case 2: If U ′ ⊆ U.

Then U ′
⋂
fm(U) = φ. Again, f is transitive, so there exists z ∈ U ′

such that fn(z) ∈ U ′, where n > m. Finally, there exists 0 < m < n and
z, fn(z) ∈ U ′, but since z ∈ U so fm(z) ∈ fm(U) and U ′

⋂
fm(U) = φ so

fm(z) /∈ U ′, and this contradicts Lemma 2.1.1.

In the next proposition, we will see another look to sensitive dependence
on initial conditions as mentioned in [1, Proposition 2.1.16].

Proposition. 2.1.1. [1, Proposition 2.1.17] Let f : I → I be a differen-
tiable map if f is an expanding map then it possess a sensitive dependence
on initial conditions.

Proof. Consider the Lyapunov exponent λ(x) for a map f as follows

λ(x) = lim
n→∞

1

n

n−1∑
i

log |f ′(xi)|, for all xi ∈ I.

Now, take two points x0, x1 and let δ = |x0 − x1|. Then after n iterations
we have

δxn = |xn − xn−1| = |fn(x1)− fn(x0)| = δenλ(x0)

12



Take the limit of both sides and solve

λ(x0) = lim
n→∞

lim
δ→0

1

n
log
∣∣∣fn(x0 + δ)− fn(x0)

δ

∣∣∣ = lim
n→∞

1

n

∣∣∣dfn(x0)

dx

∣∣∣
= lim

n→∞

1

n
log
∣∣∣n−1∏
i=0

f ′(xi)
∣∣∣ = lim

n→∞

n−1∑
i=0

log |f ′(xi)|.

Now, if m,n ∈ Z+ then after m > n iterations we get

|fm(x1)− fm(x0)| = δx0e
mλ(x0)

= δx0e
(m−n)λ(x0)enλ(x0)

= δe(m−n)λ(x0) > δ.

Now, if
f ′(xi) > 1

then
log |f ′(xi)| > log 1 = 0

this implies that
n−1∑
i=0

|f ′(xi)| > 0

and so

lim
n→∞

n−1∑
i=0

|f ′(xi)| > 0

then λ(x) > 0 and so f has a sensitive dependence on initial conditions.

Examples [2, Example 1], [27, Example 1]

(i) In [2], D. Assaf, and S.Gadbois proved that (1) and (3) do not imply
(2). We consider an example

Let X = {S1\{e(i2πp)/q|p, q ∈ Z, q 6= 0}, where the metric is the
usual arc length i.e d(eiθ, eiφ) = |θ − φ|. Let f : X → X be a map
defined by f(eiθ) = ei2θ, then

(a) f is transitive. Take any two nonempty open sets U, V of X, then
there exists y ∈ U such that fk(y) ∈ V for some k nonnegative
integer, since fk(V ) expands to cover all X.

13



(b) f contains no periodic points. x is a periodic point of f if and
only if there exists k ∈ Z+ such that fk(x) = x i.e. if fk(eiθ) = eiθ

then

eiθ2
k

= eiθ

so, eiθ(2
k−1) = 1

and, iθ(2k − 1) = 0

then, θ = 2nπ

We remove the periodic points from the set X . So there are
no periodic points.

(c) f has sensitive dependence on initial conditions. Let δ =
π

2
> 0,

and take any point eiθ ∈ X. This implies that there exists eiφ ∈ X
such that 0 < |θ − φ| < π. Now, choose n ∈ Z+.

so, 2n|θ − φ| < π < 2n+1|θ − φ|

then, d(fn(eiθ), fn(iφ)) = d(ei2
nθ, ei2

nφ) >
π

2
.

(ii) In [27], Vellekoop and Berglund give a counter example that shows
conditions (2) and (3) don not imply (1). Let

f(x) =


3x, 0 ≤ x < 1

3 ;
−3x+ 2, 1

3 ≤ x <
2
3 ;

3x− 2, 2
3 ≤ x < 1;

f(x− 1), x ≥ 1.

(a) f is not transitive. Notice that f([0, 1]) = [0, 1] and any open set
in (1,∞) does not intersect fk(U), where U is open set in (0, 1).

(b) The periodic points are dense in X. Consider fn(x) as follow.

fn(x) =


3nx− i, i

3n ≤ x <
i+1
3n ; if i is even

−3nx+ (i+ 1), i
3n ≤ x <

i+1
3n ; if i is odd

fn(x− 1), x ≥ 1.

Where i = 0, 1, 2, · · · , 3n−1. Notice that the fixed points of fn(x)
are

1. x =
i

3n−1
, if i is even except at i = 3n−1.

2. x =
i+ 1

3n+1
, if i is odd.
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So the distance between any two fixed points is less than (
1

3
)n−1.

So the periodic points are dense in X.

(c) f has sensitive dependence on initial conditions. Since |f ′(x)| = 3,
for all x ∈ [0,∞). By Proposition 2.1.1 we get that f has sensitive
dependence on initial conditions.

2.2 D-Chaos

Aullbach establishes in [3, Definition 3.3] the D-chaos definition that we
present here, which gives us a generalization of the Devaney’s definition of
chaos in a compact metric space.

Definition. 2.2.1. [3, Definition 3.3] A continuous map f : X → X where
X is a compact metric space is called D-chaotic if there exists a compact
invariant subset Y of X such that:

1. f |Y is transitive.

2. (P (f)|Y ) = Y .

3. f |Y has sensitive dependence on initial conditions.

if Y = X in the D-chaos definition, then (X, f) is a chaos in the sense of
Devaney.

Lemma. 2.2.1. A function is invertible if and only if it is bijective.

Proof. The first direction. Suppose that a function f : X → Y is invertible
and let f−1 be its inverse. First we show that f is injective, so let a, b ∈ X
such that

f(a) = f(b),

so, f−1(f(a)) = f−1(f(b)),

then, id(a) = id(b),

and, a = b

To show f is surjective, let y ∈ Y and let f−1(y) = x for some x ∈ X. This
implies that f(x) = f(f−1(y)) = id(y) = y, so f is bijective.

The opposite direction. Suppose that f is bijective and let y ∈ Y . Since
f is surjective so there exists x ∈ X such that f(x) = y. Also, f is injective
so x is unique.
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Now, define g : Y → X such that g(y) = x. So g is well defined. And

g(y) = x

then,
f(g(y)) = f(x) = y = id(y)

and,
g(y) = x

then,
g(f(x)) = g(y) = x = id(x)

We conclude that g is the inverse of f , and f is invertible.

Consider the next proposition as mentioned in [3, Proposition 3.1].

Proposition. 2.2.1. [3, Proposition 3.1] Let (X, dX) and (Y, dY ) be com-
pact metric spaces and suppose that a continuous map f : X → X is conju-
gate to continuous map g : Y → Y . Then f is D-chaotic if and only if g is
D-chaotic.

Proof. Let f be D-chaotic and suppose that f is conjugate to g, so there
exist a homeomorphism (continuous and an invertible map with continuous
inverse) h : X → Y such that h ◦ f = g ◦ h. We want to show that g is
D-chaotic.

Let G = h(F ) ⊆ Y , where F is a compact invariant subset of X. We know
that the image of a continuous compact set is compact. So G is a compact
subset of Y and invariant

g(G) = g(h(F ))

= h(f(F ))

⊆ h(F ) = G

We want to show the following three conditions:

1. g|G is transitive. Suppose not, so there exists two nonempty open
subsets U, V ⊆ G ⊆ Y of G such that

gk(U) ∩ V = φ, for all k ∈ Z+.

16



But, h is surjective, so there exists N ⊆ F ⊆ X an open set in F such
that h(N) = U , note that we restrict h : F → G. Also, h ◦ f = g ◦ h
and h is invertible. Note that

g = h ◦ f ◦ h−1

so, gk = h ◦ f ◦ h−1 ◦ h ◦ f ◦ h−1 · · · ◦ h ◦ f ◦ h−1 k-times

and, gk = h ◦ fk ◦ h−1

then, gk ◦ h = h ◦ fk

Now, gk(h(N)) ∩ V = φ

h(fk(N)) ∩ V = φ

h−1(h(fk(N) ∩ V )) = φ

h−1h(fk(N)) ∩ h−1(V ) = φ ( since h is 1− 1)

fk(N) ∩ h−1(V ) = h−1h(fk(N)) ∩ h−1(V ) = φ

fk(N) ∩ h−1(V ) = φ for all k ∈ Z+

Which is a contradiction since N and h−1(V ) are open subsets in F
and X is chaotic. So g|G is transitive.

2. (P (g)|G) = G.
Observe that x is a periodic point of f |F of order n if and only if
y = h(x) is a periodic point of g|G of order n.
The first direction. Suppose that x is a periodic point of f |F of order
n. i.e. fn(x) = x

gn(y) = gn(h(x))

= h(fn(x))

= h(x) = y

The opposite direction. Suppose that y is a periodic point g|G of order
n, i.e. gn(y) = y

then, gn(h(x)) = h(x)

and, h(fn(x)) = h(x) (h is 1− 1)

so, fn(x) = x

17



Now, assume (P (g)|G) 6= G, so there exists an open set V in G such
that (P (g)|G)

⋂
V = φ. This means that y /∈ V , for all periodic points

in G. But, a periodic point x in F such that h(x) = y of the same
period.

h(x) /∈ V,

then, h−1(h(x)) /∈ h−1(V )

and, x /∈ h−1(V ), for all x periodic point in F.

But h−1(V ) is an open set in F and P (f)|F is dense in F . So we get
a contradiction , which means that (P (g)|G) = G.

3. g|G does not have sensitive dependence on initial conditions. We have
that f |F has sensitive dependence on initial conditions. So there exists
δ0 > 0, such that for all x ∈ F and for any ε0 > 0, there exists z ∈ F
such that d(x, z) < ε0 and d(fn(x), fn(z)) > δ0.

Now, let y ∈ G and δ > 0, so there exists ε > 0 and w ∈ G such
that d(gn(y), gn(w)) < δ. Also, we know that h is surjective so there
exists x, z ∈ F such that h(x) = y and h(z) = w. Then

d(gn(y), gn(w)) = d(gn(h(x)), gn(h(z)))

= d(h(fn(x)), h(fn(z))) < δ

But, h−1 is continuous. And

d(h−1(h(fn(x))), h−1(h(fn(z)))) < δ0

So,

d(fn(x), fn(z)) < δ0

Which contradicts the assumption. So g|G has sensitive dependence
on initial conditions.
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3 Cross Links of Transitivity

We begin with a section of topological transitivity and consider two defini-
tions of it and then state some theorems. Next, we will see if the map has
only one discontinuity, under what condition the transitivity implies the ex-
istence of dense orbit? Finally, we consider the indecomposability definition
and the relation between it and the transitivity and with other definitions.

3.1 Topological Transitivity

In this section we consider the two definitions of topological transitivity
mentioned in Definition 1.2.8 and Definition 1.2.9, then we consider some
theorems related to those definitions.

The two definitions of transitivity are equivalent under some conditions.
Consider the following theorem as in [12, Proposition 1, Proposition 2].

Proposition. 3.1.1. [12, Proposition 1, Proposition 2] Let X be a complete
metric space with a countable base and f : X → X a continuous function,
also X has no nonempty open subset U that has a finite subset dense on it.
Then f is UV -topologically transitive if and only if it is OX-topologically
transitive.

Proof. The first direction. Consider the countable base {Vi}i∈I and let

Wi =
∞⋃
n=0

f−n(Vi)

Since f is continuous, so for every open subset Vi, f
−n(Vi) is open, then Wi

is open in X. By the transitivity of f , for every nonempty open subset U of
X, there exists n ∈ Z+ such that

fn(U) ∩ Vi 6= φ implies f−n(fn(U) ∩ Vi) 6= φ

then, U ∩ f−n(Vi) 6= φ

U ∩
∞⋃
n=0

f−n(Vi) 6= φ

U ∩Wi 6= φ

So Wi is dense in X, and this true is for all i ∈ I.
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By Baire Category theorem, every completely metrizable topological space
is a Baire space. So

⋂
i∈IWi is dense in X. Let x ∈

⋂
i∈IWi and given any

nonempty open subset U of X, then there exists Vi ⊆ U for some i ∈ I (since
{Vi}i∈I is a base of X). We showed above that there exists n ∈ Z+ such
that x ∈ f−n(Vi), so fn(x) ∈ Vi ⊂ U , this implies that fn(x) ∈ U , for some
n ∈ Z+. This means the orbit of x is dense in X, for every x ∈

⋂
i∈IWi.

The opposite direction. Suppose that X has a dense orbit at x ∈ X and
let U, V be two nonempty open subsets of X. there exists m,n ∈ Z+ such
that fm(x) ∈ U , fn(x) ∈ V (suppose m,n are the least positive integer).
Consider two cases :

Case 1: If m ≥ n.

This means that fm(x) get in V then fn(x) get in U . So there exists points
{fk1(x), fk2(x), · · · , fks(x)}. Where n ≤ ki ≤ m, for all i = 1, 2, · · · , s. By
assumption that V has no finite dense subset, so there is an open set W ⊆ V
such that W does not have any element of these set. On the other hand,
there exists r ∈ Z+ with f r(x) ∈ W (since we assume that the orbit of x is
dense). Set j = r −m > 0 so f j(U) ∩ V 6= φ.

Case 2: If m < n.

Let j = n−m > 0. Then f j(U) ∩ V 6= φ.
We conclude from the two cases that f is UV -topologically transitive.

Now, we consider the following proposition that gives another condition
for the function f to be UV -topologically transitive if f is OX-topologically
transitive, see [24, Proposition 1.1].

Proposition. 3.1.2. [24, Proposition 1.1] Let X be a prefect space (i.e
has no isolated points) then if f is OX-topologically transitive then f is
UV -topologically transitive.

Proof. Suppose X is a perfect space which has a dense orbit say O(x). Now,
let U, V be two nonempty open subsets of X.

fk(x) ∈ U and fm(x) ∈ V for some k < m ∈ Z+ this follows since the orbit
of x is dense. Now, X has no isolated point so fm(x) ∈ V \{x, f(x), . . . , fk(x)}
where V \{x, f(x), . . . , fk(x)} is nonempty open subset of X.
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So we conclude that fm−k(U) ∩ V 6= φ and this implies that f is UV -
topologically transitive.

In general, UV-definition and OX-definition not equivalent. We consider
two examples as in [12, Example1, Example 2].

Example. 3.1. [12, Example 1] Let X = {1, 2}, and give the discrete
topology τ , i.e τ = {φ,X, {1}, {2}}. Let f : X → X be a continuous map
such that f(x) = 2.

O(1) = {1, f(1)} = {1, 2} = X is dense in X. So OX-definition is
satisfied.

But f does not satisfy the UV-definition, Let U = {2}, V = {1}, then
fk(U) = {2} ∩ V = φ for all k ∈ Z+.

Example. 3.2. [12, Example 2] Let X = {θ ∈ S1|θ = 2kπ
2n−1 , n ∈ Z+, 0 ≤

k ≤ 2n − 1} and define f : X → X a continuous map such that f(θ) = 2θ,
and let g : S1 → S1 be defined as g(θ) = 2θ. Let U, V be two nonempty open
subsets in X, so U = Ú ∩X, V = V́ ∩X, where Ú , V́ are open sets in S1.
Also, gk(Ú) = S1 for some k ∈ Z+. So gk(Ú) ∩ V́ 6= φ.

The periodic points of g are

gn(θ) = θ implies 2nθ = θ + 2kπ

then, 2nθ − θ = 2kπ

θ =
2kπ

2n − 1

We get that the elements of X are periodic points of the function g.
Now, there exists a periodic point p ∈ Ú and gk(p) ∈ V́ , (since the

periodic points of g are dense in S1). But, p ∈ X this implies p ∈ U = X∩Ú ,
fk(p) = gk(p) ∈ V = V́ ∩X, so fk(U) ∩ V 6= φ. This means that f is UV-
topologically transitive.

On the other hand, f is not OX-topologically transitive since any orbit in
X is periodic orbit and so there is no dense orbit on X.

Let us consider the following theorems.

Theorem. 3.1.1. Every compact metric space is seperable.

Theorem. 3.1.2. A metric space is compact if and only if it is complete
and totally bounded.
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Theorem. 3.1.3. Every seperable metric space has countable basis.

Lemma. 3.1.1. Let X be a metric space. Then

1. The union of finitely many nowhere dense sets is nowhere dense.

2. If X has no isolated points then every finite subset of X is nowhere
dense.

Theorem. 3.1.4. [17],[9],[28],[13], [12] Let f : X → X be a continuous
map, X be a compact perfect metric space, and f(X) = X, then the following
are equivalent:

1. f is UV-topologically transitive.

2. f is OX-topologically transitive.

3. Whenever E is a closed subset of X and f(E) ⊆ E, then either E = X
or E is nowhere dense.

4. Whenever U is an open subset of X and f−1(U) ⊆ U , then U = φ or
U is dense in X.

5. For every nonempty open subset U in X,
⋃∞
n=1 f

−n(U) is dense in X.

6. For every nonempty open subset U and V in X, there exists n ∈ Z+

such that f−n(U) ∩ V 6= φ.

7. The set of points {x|Of (x) = X} is a dense Gδ-set.

8. For every nonempty open subset U in X,
⋃∞
n=1 f

n(U) is dense in X.

Proof. (1) and (2) are equivalent

Since X is compact so we conclude by Theorem 3.1.1, Theorem 3.1.2 and
Theorem 3.1.3 that X is complete and has countable bases. Also, X is
perfect so it has no isolated points then by Lemma 3.1.1 every finite subset
of X is nowhere dense, this implies that X has no nonempty open subset U
that has a finite subset dense on it.

We get by Proposition 3.1.1 that f is UV-topologically transitive if and
only if f is OX-topologically transitive.

(2) implies (3)
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Let x ∈ X such that Of (x) = X, and let E be a closed subset where
f(E) ⊆ E.
Now, if E is not nowhere dense i.e. Int(E) = Int(E) 6= φ, then Int(E) ⊆ E
and open, so by denseness of the orbit of x, there exists fk(x) ∈ Int(E) for
some k ∈ Z+ so fk(x) ∈ E.
Consider the set {fm(x)|m ≥ k} ⊆ E since f(E) ⊆ E. This implies that

{x, f(x), · · · , fk−1(x)} ∪ E = X

Take f for both sides

{f(x), · · · , fk−1(x)} ∪ f(E) = f(X) = X

By repeating this we get f(E) = X ⊆ E so E = X.

(3) implies (4)

Suppose (3) holds and let U be a nonempty open subset in X where
f−1(U) ⊆ U . Consider E = X|U is a closed subset. Now,

f(E) = f(X|U) ⊆ f(X|f−1(U)) (sincef−1(U) ⊆ U)

= f(f−1(X|U))

⊆ X|U = E

This implies that f(E) ⊆ E, by (3) either E = X or E is nowhere dense.
If E = X then U = φ.
If E is nowhere dense, i.e. Int(E) = φ then

U = X|E = X|Int(E)

= X|φ
= X

So U is dense in X.

(4) implies (5)
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Let U be any nonempty open subset in X. Then

f−1(
∞⋃
1

f−n(U)) =
∞⋃
1

f−1(f−n(U))

=

∞⋃
1

f−n−1(U) ⊆
∞⋃
1

f−n(U)

So
⋃∞

1 f−n(U) is open, f−1(
⋃∞

1 f−n(U)) ⊆
⋃∞

1 f−n(U) and
⋃∞

1 f−n(U) 6=
φ, by (4) we get

⋃∞
1 f−n(U) is dense in X.

(5) implies (6)

Suppose U, V be two nonempty open subset in X. So
⋃∞

1 f−n(U) is dense
in X.

∞⋃
1

f−n(U) ∩ V 6= φ

This is equivalent to f−n(U) ∩ V 6= φ for some n ∈ Z+.

(6) implies (7)

Let {Un}∞1 be a topological basis. So we get that

{x|Of (x)} =

∞⋂
n=1

∞⋃
k=1

f−k(Un) 6= φ

Since for every Un open subset in X, there exists fk(x) ∈ Un for some
k ∈ Z+, this implies that x ∈ f−k(Un).
Now, by (6)

⋃∞
k=1 f

−k(Un) is dense for all n ∈ Z+. But X is compact then
it is complete, so by Baire Category theorem,

⋂∞
n=1

⋃∞
k=1 f

−k(Un) is a dense
Gδ-set.

(7) implies (2)

If (7) holds then it is clear that (2) holds.

(1) equivalent to (8)
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Let U, V be two nonempty open subsets in X. Then
fn(U) ∩ V 6= φ, for some n ∈ Z+

This is equivalent to
⋃∞

1 fn(U)∩V 6= φ. Then
⋃∞

1 fn(U) is dense in X.

3.2 Discontinuity and Transitivity

In [1, Proposition 1], it has been proved that if f : X → X is a contin-
uous map where X is a complete metric space with a countable base and
if f is UV-topologically transitive then it has a dense orbit. But, in [13]
they showed that in a Baire seperable metric space, if f has a discontinuity
at most one point then UV-topological transitivity implies OX-topological
transitivity.

Proposition. 3.2.1. [1, Proposition 1] Let f : X → X be a UV-topologically
transitive map on a Baire seperable metric space X. Then if f has only one
point of discontinuity then f has a dense orbit.

Proof. Let z be a point of discontinuity and suppose f is UV-topologically
transitive of a Baire seperable metric space X. If O(z) = X then we are
done.
If O(z) 6= X, so there exists an open subset V such that V ∩O(z) = φ. We
claim that O(z) is nowhere dense.

Suppose O(z) is not nowhere dense, this means that Int(O(z)) 6= φ, let
U = Int(O(z)) ⊆ O(z). By the transitivity of f , there exists q ∈ U such that
fm(q) ∈ V , for some m ∈ Z+. We conclude that fm(q) 6= fn(z), for every
n ∈ Z+, this implies that fm is continuous at q (Since f is continuous). That
means there exists an open neighborhood W of q such that fm(W ) ⊆ V .

On the other hand, there exists k ∈ Z+ such that fk(z) = q (Since q ∈ U),
then we have fk+m(z) ∈ V and this yields to a contradiction.

Now, consider the countable basis {Un}n∈Z+ of X/O(z) and let

Tn = {x ∈ X|fk(x) ∈ Un, for some n ∈ Z+}.

Let x ∈ Tn then there exists k ∈ Z+ such that fk(x) ∈ Un, and we know
that fk continuous at x and this means that fk(U) ⊆ Un, for some open
neighborhood U of x, thus Tn is open.
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Take any nonempty open subset V in X, by transitivity of f there exists
y ∈ V such that fk(y) ∈ Un for some k ∈ Z+, hence y ∈ Tn and Tn is dense
in X, and this is true for all Tn’s. Now, since X is a Baire space so

⋂
n∈Z+ Tn

is also dense in X and it follows that O(x) = X, for all x ∈
⋂
n∈Z+ Tn.

In the following example A. Peris [23] gives a function that is discontin-
uous at two points and shows that the previous proposition does not hold.

Example. 3.3. [23, Example 1] Consider the tent map.

T (x) =

{
2x; 0 ≤ x ≤ 1/2

2(1− x) 1/2 < x ≤ 1

It is clear that T (x) is a continuous function and T (x) is a UV-topologically
transitive map. So, by Theorem 3.1.1 the tent map has a dense orbit.

Now, let y1 ∈ (0, 1) such that OT (y1) is dense in [0, 1] and take y0 = y1+1.
Define f(x) as:

f(x) =


T (x) 0 ≤ x < 1

y0 x = 1

1 + T (x− 1) 1 < x < 2

y1 x = 2

At first we will show that f(x) does not have a dense orbit.

Notice that OT (y1) = Of (y1) so it is dense in (0, 1). It follows that,
1 +OT (y0 − 1) = {xn}n∈Z+ is dense in (1, 2). Then

f(y0) = 1 + T (y0 − 1) and f(x1) = 1 + T (x1 − 1) = 1 + T 2(y0 − 1) = x2.

Inductively, we have xn+1 = f(xn) and hence Of (y0) is dense in (1, 2).

We conclude that Of (y1) is dense in (0, 1) and Of (y0) is dense in (1, 2)

Now, suppose x = k
2n , where k, n ∈ Z+ we have shown that Of (y1) is

dense in (0, 1) and Of (y0) is dense in (1, 2). Then fm(x) = y1 if x ∈ (0, 1)
or fm(x) = y0 if x ∈ (1, 2). Moreover,

T (
1

2
) = 1, T 2(

1

4
) = T 2(

3

4
) = 1, . . . Tn(

k

2n
) = 1.
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(a) Tent Map T(x).

(b) Modified Tent Map f(x)

Figure 1: Plots of T(x) and f(x)

This is true if x = k
2n ∈ (0, 1) and in irreducible form. This implies that

y0 = fm(x) = f(fm−1(x)) = f(Tm−1(x)) = f(1)

For x ∈ (1, 2) and f(x) > 1 then if f(x) = 2 we get f2(x) = f(2) = y1,
or if 1 < f(x) < 2 we iterate the map f until we find k ∈ Z+ such that
T k(x−1) = 1, and since f t(x) = 1+T t(x−1) = f(1) = y0, where 1 ≤ t ≤ m,
then we get fm+1(x) = y1.

Finally, let x ∈ [0, 2] then consider two cases.

Case 1 : x ∈ [0, 1].
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Either x = k
2n then fm(x) = y0 for some m ∈ Z+ so for all t ≥ m, f t(x) ∈

(1, 2). Or x 6= k
2n then fn(x) = Tn(x) ∈ [0, 1).

Case 2 : x ∈ (1, 2].

Either x = k
2n then fm(x) = y1 for some m ∈ Z+ so for all l ≥ m, f l(x) ∈

(0, 1). Or x 6= k
2n then fn(x) = Tn(x) ∈ (1, 2).

So we conclude that f does not have a dense orbit.
Then we will show that f is UV-topologically transitive. Let U, V be two
nonempty open subset in (0, 2). There are four cases :

Case1: If U, V ⊆ (0, 1) and we know that O(y1) is dense in (0, 1) then
there exists n,m ∈ Z+ such that fn(y1) ∈ U , fm(y2) ∈ V and suppose
n < m, if we let k = n − m then we get fk(fn(y1)) ∈ fk(U) ∩ V , so
fk(U) ∩ V 6= φ.

Case2: If U, V ⊆ (1, 2) and we know that O(y0) is dense in (1, 2) so as
in Case1, it follows that fk(U) ∩ V 6= φ.

Case3: If U ⊆ (0, 1) and V ⊆ (1, 2), we can choose n, k,m such that
fm( k

2n) = y0 this implies that f t(y0) ∈ V , for some t > m where t ∈ Z+.
Then f t(U) ∩ V 6= φ.

Case4: If U ⊆ (1, 2) and V ⊆ (0, 1), as in Case3 we can find n, k,m ∈
Z+ such that fm( k

2n) = y1 ∈ U , so f t(y1) ∈ V , for some t > m where
t ∈ Z+.

Finally, we conclude that f is UV-topologically transitive but f does not
have a dense orbit.

3.3 Indecomposability and Transitivity

In this section we introduce the concept of indecomposability of f and
show the relation between transitivity and indecomposability.
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Consider the definitions of indecomposability, strongly indecomposable
and weakly indecomposable as mentiond in [14, Definition 2.1].

Definition. 3.3.1. [14, Definition 2.1] Let f : X → X be a continuous
map on the metric space X. Then f is called:

1. Strongly Indecomposable if for any sequence of f -invariant closed
subsets {An}n∈Z+ of X with Int(An) 6= φ then Int(

⋂
n∈Z+ An) 6= φ.

2. Indecomposable if for any two f -invariant closed subsets A,B ⊆ X
with Int(A) 6= φ and Int(B) 6= φ then Int(A ∩B) 6= φ.

3. Weakly Indecomposable if there exists a residual subset S ⊆ X such
that for any two points x, y ∈ S, w(x) = w(y) 6= φ.

In [14], they used the theorem that states that f is transitive if and only
if the only f -invariant closed subset that have nonempty interior is X itself.
But, in the following example we will show that this statement is not true
in general.

Example. 3.4. Let X = {1, 2}, τ = {φ,X, {2}} and define the function

f : X → X by f(x) = 1.

The only closed proper subset it is the set {1} and it is f -invariant, since
f(1) = 1 but int({1}) = φ. So we conclude that the only f -invariant closed
subset with nonempty interior is X itself.

On the other hand, f is not transitive. Take U = V = {2} are nonempty
open subset of X then fk(U) = {2}, for all k ∈ Z+, so fk(U) ∩ V = φ.

However, we found that the statement would be true if X is a compact
perfect metric space and f(X) = X, and we clarified this in next theorem.

Theorem. 3.3.1. Let f : X → X be a continuous map, where X is a
compact perfect metric space and f(X) = X, then f is transitive if and only
if the only f -invariant closed subset that have nonempty interior is X itself.

Proof. From statement 1 and 3 in Theorem 3.1.4 the proof holds.
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Now, we consider the following Lemma.

Lemma. 3.3.1. Let f : X → X be a continuous map where X is a compact
perfect metric space, f(X) = X and R(f) = X. Then the following are
equivalent:-

1. f is transitive.

2. f is strongly indecomposable.

3. f is indecomposable.

4. f is weakly indecomposable.

Proof. 1 implies 2 implies 3

Suppose that f is transitive then by Theorem 3.1.5 the only f -invariant
closed subset that have nonempty interior is X itself, so f is indecomposable
and this implies that f is strongly indecomposable.

3 implies 1

Suppose that f is indecomposable and let A be a nonempty closed f -
invariant set with nonempty interior, we will show that A = X.

Now, let U be a nonempty open subset in X and let U ′ =
⋃
n∈Z+ fn(U),

so U ′ is a nonempty closed f -invariant subset with nonempty interior.

f(U ′) = f(
⋃
n∈Z+

fn(U))

⊆ f(
⋃
n∈Z+

fn(U))

⊆
⋃
n∈Z+

fn+1(U)

⊆
⋃
n∈Z+

fn(U) = U ′ (1)

Also,

int(
⋃
n∈Z+

fn(U)) =
⋃
n∈Z+

fn(U) 6= φ
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Now, f is indecomposable so we get

int(U ′ ∩A) 6= φ

then, int(U ′) ∩ int(A) 6= φ

and,
⋃
n∈Z+

fn(U) ∩ int(A) 6= φ

so, fn(U) ∩ int(A) 6= φ, for some n ∈ Z+.

(2)

This implies that, there exists an open set say U1 in U such that fn(U1) ⊆
int(A). But, the recurrent points are dense in U1 since they are dense in X,
also A is closed and f -invariant then U1 ⊆ A.

Finally, we choose U arbitrary so we can take U = X this means that
X ⊆ A implies that X = A.

4 implies 1

Let f be weakly indecomposable, i.e there exists a residual set S such that
for every x, y ∈ S,w(x) = w(y).

Now, we know by the assumption that the R(f) is a dense Gδ-set and X
is a Baire space then S′ = R(f) ∩ S is a residual set. Let x, y ∈ S′, y is a
recurrent point so by the definition of recurrent points y ∈ w(y) = w(x),
but w(x) = w(x) and R(f) = X so w(x) = X and then f is transitive see
[6].

1 implies 4

Let f be transitive, by Theorem 3.1.5 the Trf is nonempty dense set
since X is Baire space, so Trf is a dense Gδ-set. So, let be the residual
set S = Trf then for all x, y ∈ S,w(x) = X = w(y), this means that f is
weakly indecomposable.

After the above Lemma, we consider the following theorem.

Theorem. 3.3.2. Let f : X → X be a continuous map where X is a
compact perfect metric space and f(X) = X and R(f) = X. Then the
following statements are equivalent

31



1. f is Devaney chaotic.

2. f is transitive and has a dense set of periodic points.

3. f is strongly indecomposable and has a dense set of periodic points.

4. f is indecomposable and has a dense set of periodic points.

5. f is weakly indecomposable and has a dense set of periodic points.

Proof. P (f) ⊆ R(f) then P (f) ⊆ R(f). Now, if P (f) = X, then R(f) = X.
So, the theorem follows from Lemma 3.3.1.
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4 Generalizations and Relaxations on Devaney’s
Chaos

In this section we present our main contribution in this thesis. First, we
talk about the proposed generalization of Devaney’s definition of chaos in
metric spaces onto topological spaces. Then we present some suggested
modifications on Devaney’s definition conditions and consider their effect
on chaos definition.

4.1 Chaos Space

V.Kumar on his PHD-Thesis in [18, Chapter 2] suggested a generalization
of chaos in topological spaces, here we suggest some modifications on that
generalization, and consider some results. Then we show the relation be-
tween it and other definitions of chaos.To generalize the DC-Definition of
chaos in topological space. At first, we generalized the definition of sensitiv-
ity for topological spaces, since Devaney’s chaos uses sensitivity definition
in metric spaces. Then we give a generalization of DC-Definition by the
TC-Definition as follow.

Definition. 4.1.1. Let (X, τ) be a topological space and f : X → X be a
continuous map. We say that f is sensitive at x ∈ X if for any open set U
containing x there exists y ∈ U and an open set V such that fn(x) ∈ V but
fn(y) /∈ V for some n ∈ Z+, f is called sensitive if it is sensitive at every
point in X.

Next, we will consider some remarks on the sensitive functions.

Notes :

1. If f is sensitive at x then x is not an isolated point.
By the definition of sensitive function, for any open set U containing
x, there exists y ∈ U . So x is not an isolated point.

2. There are no sensitive functions in discrete spaces.
For discrete spaces, {x} is an open set y /∈ {x} if y 6= x.

3. Every function is sensitive in indiscrete spaces.
For indiscrete space the only open sets are X and ∅.

Definition. 4.1.2. Let (X, τ) be a topological space and f : X → X be a
continuous map. Then f is chaotic on X if
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(i) Of (x) = X, for some x ∈ X.

(ii) Periodic points of f are dense in X.

(iii) f is sensitive on X.

We denoted this definition by TC-Definition of chaos, and the Devaney’s
Definition of chaos by DC-Definition.

Proposition. 4.1.1. Let f : X → X be a continuous map such that fn is
nonconstant in every open set U for some n ∈ Z+ and suppose that X is T2
and perfect then f is sensitive.

Proof. Let x ∈ X and U be any open set containing x. This implies that
there exists y ∈ U such that x 6= y. (Since X is perfect so it has no isolated
points).

Now, fn a nonconstant for some n ∈ Z+, fn(x) 6= fn(y) for some n ∈ Z+.
Suppose not, i.e fn(x) = fn(y), for all y ∈ U this implies that fn is constant
on the set U , which contradicts the assumption.

Since X is a T2 space and fn(x) 6= fn(y). Then there exists disjoint open
sets V ,Z such that fn(x) ∈ V and fn(y) ∈ Z, but fn(y) /∈ V . So f is
sensitive.

4.1.1 Relation between TC-Definition and DC-Definition

In this section we talk about the realtion between the TC-Definition and
the DC-Definition.

Proposition. 4.1.2. If U is a finite nowhere dense set, then it does not
have a finite dense subset.

Proof. Note that A is nowhere dense means that if its closure contains no
open sets as subsets.

Now, suppose that every finite set is nowhere dense, and let U be a
nonempty open subset of X then (by definition of nowhere dense) U has
no finite dense subset.

Proposition. 4.1.3. TC-Definition implies DC-Definition

Proof. Suppose TC-Definition holds. We first prove that f is topologically
transitive.
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Now, since f is sensitive at x, for every x ∈ X then X has no isolated
points. So every finite set is nowhere dense. This means that no nonempty
open subset U has a finite subset that dense in U .

Since, O(x) = X for some x ∈ X and no nonempty open subset U of X
has a finite dense subset in U . So, by Proposition 3.1.1 we conclude that f
is topologically transitive.

Given that the set of periodic points are dense in X and we showed that
f is topologically transitive. So, f is chaotic in the sense of Devaney.

Proposition. 4.1.4. If X is a compact metric space then the DC-Definition
implies the TC-Definition.

Proof. Suppose DC-Definition holds.

X is a compact metric space then X is complete space and has a countable
base. Also, f is topologically transitive. So, by Proposition 3.1.1 O(x) = X
for some x ∈ X, and the first condition holds.

The second condition also holds from the hypothesis.

It remains to show that f is sensitive on X. To do this, suppose that f
has sensitive dependence on initial conditions.

So, there exists δ > 0 such that for all x ∈ X and for every neighborhood
N of x, there exists y ∈ N and n ∈ Z+ such that d(fn(x), fn(y)) > δ.

Let x ∈ X, U be any open set containing x and V = Bδ(x) for some
δ > 0, then there exists y ∈ U such that

fn(x) ∈ V = Bδ(x) but fn(y) /∈ Bδ(x)

So, f is sensitive.

Banks et al. [4, Theorem 1] proved that conditions (1) and (2) imply (3)
and Vellekoop and Berglund [27] showed that on intervals (1) implies (2)
and (3). But in TC-Definition there is no redundancies, see the following
examples.

Example. 4.1. 1. (i) and (ii) do not imply (iii)
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Let X = {1, 2}, and let τ = {X, {1}, φ}, and define the map f(2) =
1, f(1) = 2.

Notice that, O(1) = O(2) = X so the first condition holds and the
set of periodic points {1, 2} is dense in X.

But f is not sensitive on X, take 1 ∈ X where {1} is an open set
containing 1, but there is no point which differs from 1 in the open set
{1}.

2. (ii) and (iii) do not imply (i)

Let f : R→ R be a map defined by f(x) = x and let τ be the usual
topology on R.

(a) O(x) = x, for every x ∈ R then does not exists x ∈ R such that
O(x) = R.

(b) For all x ∈ X,x is a periodic point so the set of periodic points
is dense in R.

(c) f is sensitive. Take x ∈ R and U be any open set containing x,
and take V = Bε(x) so let y 6= x ∈ Uand choose ε = d(x, y)/2.
This implies that f(x) = x ∈ V but f(y) = y /∈ V .

3. (i) and (iii) do not imply (ii) Let

f(x) =

{
3x
2 , 0 ≤ x < 1

2
3(1−x)

2 , 1
2 ≤ x ≤

3
4

Since |f ′(x)| = 3
2 ,for all x ∈ [0, 34 ] then f is sensitive. However,

the interval (0, 38) has no periodic points because if we take any initial
point in the interval (0, 38) then the trajectory will not reurn there as
shown in Figure 2.

Moreover, f is topologically transitive so by Theorem 3.1.4 in pre-
vious section f has a dense orbit.
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Figure 2: Cobweb diagram of Example 2.1 (3)

Proposition. 4.1.5. Suppose that X and Y are isomorphic by the map
h : X → Y then if X is chaotic in the sense of TC-Definition then Y is also
chaotic in the sense of TC-Definition.

Proof. Suppose that X is chaotic and let h : X → Y be the isomorphic map,
we want to show that Y is chaotic.

let g = hofoh−1, we will prove the following

(i) Og(y) = Y , for some y ∈ Y .

(ii) The set of periodic points of g is dense in Y .

(iii) g is sensitive on Y .

(i) Suppose Og(y) 6= Y , for all y ∈ Y . But h is onto map so there exists

x ∈ X such that h(x) = y. This implies that Og(h(x)) 6= Y , for all x ∈ X.

This means that, there exists an open set V in Y such that Og(h(x))∩V = φ.
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Notice that

gn(h(x)) = (h ◦ f ◦ h−1(h(x)))n

= h ◦ f ◦ h−1 ◦ h ◦ f ◦ h−1 . . . (n− times)
= h ◦ fn ◦ h−1(h(x))

= h ◦ fn(x)

So, gn(h(x)) /∈ V, for all n ∈ Z+ and then h ◦ fn(x) /∈ V , which implies
that fn(x) /∈ h−1(V ) (Since h is one to one map), and this is true for all
x ∈ X.

But h−1(V ) is an open set in X and Of (x) = X, for some x ∈ X, and

this is a contradiction so Og(y) = Y , for some y ∈ Y .

(ii) Notice that x is a periodic point of f of order n if and only if y = h(x)
is a periodic point of g of order n.

Suppose x is a periodic point of f of order n i.e fn(x) = x. Now,

gn(h(x)) = h ◦ fn ◦ h−1(h(x))

= h ◦ fn(x)

= h(x)

On the other hand, if h(x) is a periodic point of g of order n, this means
that gn(h(x)) = h(x)

h ◦ fn(x) = h(x)

then, fn(x) = x

Assume that the set of periodic points of g is not dense in Y . Then, there
exists an open set V in Y such that P(g) ∩V = φ.

and, y /∈ V, for all y periodic points of g.

also, h(x) /∈ V, for all x periodic points of f .

and, x /∈ h−1(V ), for all x periodic points of f .
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But the periodic points of f are dense in X and h−1(V ) is an open set in
X, and this is a contradiction, so we conclude that P (g) = Y

(iii) We will show that g is sensitive. Let y1 ∈ Y , then there exists x1 ∈ X
such that y1 = h(x1). Let V be any open set containing y1.

Note that h−1(V ) is an open set containing x1. And we know that f is
sensitive in X, so there exists x2 ∈ h−1(V )and there exists an open set U
such that fn(x1) ∈ U but fn(x2) /∈ U , for some n ∈ Z+. Notice that:

1. If fn(x1) ∈ U . This implies that h ◦ fn(x1) ∈ h(U)
So, this implies that gn(y1) ∈ h(U)

2. If fn(x2) /∈ U . Then, h ◦ fn(x2) /∈ h(U)

This implies that gn(y2) /∈ h(U), where y2 = h(x2). So, for all y1 ∈ Y and
for any open set V containing y1, there exists y2 ∈ V such that gn(y1) ∈ V
but gn(y2) /∈ V , and then g is sensitive in Y .

4.1.2 Other Definitions of Chaos

In this section we give more two definitions of chaos, Auslander and Yorke
definition and expansive chaos.

Definition. 4.1.3. Let ε > 0. A map f on a set X is called Lyapunove
ε-unstable at a point x ∈ X if for every neighborhood U of x there is a point
y ∈ U and n ≥ 0 such that d(fn(x), fn(y)) > ε.

We denote this definition by D-AYC.

Definition. 4.1.4. The map f is chaotic in the sense of Auslander and
Yorke if:

(i) f is surjective.

(ii) f is unstable in the sense of Lyapunov.

(iii) X contains a dense orbit.
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In [18, Definition 2.2.4] give us a definition of unstability in a topological
space as follow.

Definition. 4.1.5. [18, Definition 2.2.4] Let (X, τ) be a topological space
and f : X → X be a continuous map. We say that f is stable at x if
given any neighborhood U of x there is a neighborhood V of x such that,
fn(V ) ⊆ U , for all n > 0.

f is called unstable at x if there exists a neighborhood U of x such that
for any neighborhood V of x, fn(V ) * U for some n > 0.

Now, we give a generalization of Auslander-Yorke in topological spaces in
[18, Definition 2.2.5].

Definition. 4.1.6. [18, Definition 2.2.5] Let (X, τ) be a topological space
and let f : X → X be a surjective continuous map. We say that f is chaotic
in the sense of Auslander-Yorke on X if:

(i) O(x) = X, for some x ∈ X.

(ii) f is unstable at x, for all x ∈ X.

Denote it by τ -AYC.

The following proposition gives the relation between definition of unsat-
bility in metric space and topological space as.

Proposition. 4.1.6. If f is unstable in the sense of Definition 4.1.3, then
f is unstable in the sense of Definition 4.1.5.

Proof. Let x ∈ X, so there exists U = Bε(f
n(x)) where ε > 0. Let V be

any neighborhood of x, there exists y ∈ V such that d(fn(x), fn(y)) > ε, for
some n ≥ 0.

then, fn(y) /∈ Bε(f
n(x)) = U

and, fn(V ) * U, for some n ≥ 0

So we conclude by the previous proposition that D-AYC definition of chaos
implies τ -AYC definition of chaos.
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Relation between TC-definition and τ-AYC definition of chaos

Proposition. 4.1.7. TC-definition implies τ -AYC definition.

Proof. Suppose the TC-definition holds. Since if f is sensitive then for any
neighborhood V of x, there exists y ∈ V and an open set U with fn(x) ∈ U
and fn(y) /∈ V for some n ≥ 0. Which implies that

fn(V ) * U for some n ≥ 0

We conclude that f is stable and so f is chaotic in the sense of τ -AYC
definition.

Now, we consider the definition of expansive functions and then mention
the definition of expansive chaos as in [18, Definition2.2.9]. Finally, we give
some results related to these definitions.

Definition. 4.1.7. Let (X, d) be a metric space and f : X → X be a
continuous map. Then f is expansive on X if there exists δ > 0 such that
for every x, y ∈ X with x 6= y, d(fn(x), fn(y)) ≥ δ, for some n ∈ Z+.

Definition. 4.1.8. Let (X, d) be a metric space and f : X → X be a
continuous map. Then f is expansively chaotic if

1. f is transitive.

2. The set of periodic points are dense in X.

3. f is expansive.

We denote this definition by EC-Definition.

Consider the following remarks.

Remark.. 1. if f is an expansive function then it is sensitive.

This is clear from the definitions.

But the converse is not true in general. Consider the following
example.
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Example. 4.2.

f(x) =

{
2x 0 ≤ x < 1

2

4x− 1 1
2 ≤ x ≤

3
4

f ′(x) = 2, for all x ∈ (0, 12), and f ′(x) = 4, for all x ∈ (12 ,
3
4) so f is

expanding and then it is sensitive. However, the expanding of f in the
interval [12 ,

3
4 ] is more rapid than the expand in the interval (0, 12), so

we can’t find δ as in the definition of expansive function. This means
that f is not expansive.

2. The TC-Definition does not imply the EC-Definition.
The tent map is chaotic in the sense of TC-Definition but it is not
chaotic in the sense of EC-Definition since f is not expansive.

3. The EC-Definition does not imply the TC-Definition.
This does not hold since the UV -transitivity does not imply the OX-
transitivity. So according to Proposition 3.1.1 this holds if X is a
complete metric space with a countable base.

τ −AY C TC −Definition EC −Definition

DC −Definition

compact metric space
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4.2 New Proposed Definition of Chaos

In this section we propose some modifications on Devaney’s definition of
chaos and then show some related results as follow.

Definition. 4.2.1. Let X be a metric space with metric d, and let f :
X → X be a continuous map. We say that f has a weakly sensitive
dependence on initial conditions if there is a positive real number δ,
such that for every point x ∈ X and every neighborhood N of x there exists
a point y ∈ N and nonnegative integers n,m such that

d(fn(x), fm(y)) > δ.

Definition. 4.2.2. Let X be a Topological space, and let f : X → X be a
continuous map. f is called weakly transitive if for every nonempty open
subsets U and V of X, there exists a natural number k such that
fk(U) ∩ V 6= φ or U ∩ fk(V ) 6= φ.

Remark.. If f has sensitive dependence on initial conditions then f has a
weakly sensitive dependence on initial conditions, but the converse is not
true in general. Consider the following example.

Example. 4.3. Take f(x) = 1
2x− 1, where x ∈ [0, 1]. And define the usual

metric space d(x, y) = |x− y|. |f ′(x)| = 1
2 < 1, so according to Proposition

2.1.1, f does not have a sensitive dependence on initial conditions.

However, take x ∈ [0, 1], and let δ > 0 such that |x − y| < δ where
y ∈ [0, 1] and take ε = 1

4 [1 − δ] > 0, so there exists n = 1,m = 2 such that
|f(x)− f2(y)| > ε.

43



|f(x)− f2(y)| = |1
2
x− 1− 1

4
y +

3

2
|

= |1
2
x− 1

4
y +

1

2
|

≥ 1

2
− 1

4
|2x− y|

=
1

2
− 1

4
|x+ x− y|

≥ 1

2
− 1

4
|x| − 1

4
|x− y|

≥ 1

2
− 1

4
− 1

4
δ

=
1

4
− 1

4
δ

=
1

4
[1− δ] = ε.

So we conclude that f has weakly sensitive dependence on initial conditions.

Remark.. It is clear that if f is UV -transitive then f is weakly transitive.
The converse is true if X is a compact perfect metric space and f(X) = X.

Lemma. 4.2.1. Let f : X → X be a continuous map where X is a compact
perfect metric space and f(X) = X. Then f is transitive if and only if f is
weakly transitive.

Proof. If f is transitive then f is clearly weakly transitive.
For the converse, by Theorem 3.1.4 , the following two statements are equiv-
alent.
For every nonempty open subsets U and V , there exists k ∈ Z+ such that

fk(U) ∩ V 6= φ.

For every nonempty open subsets U, V , there exists k ∈ Z+ such that

f−k(U) ∩ V 6= φ.

Now, f−k(U) ∩ V 6= φ if and only if fk(f−k(U) ∩ V ) 6= φ
This means that

φ 6= fk(f−k(U) ∩ V ) ⊆ fk(f−k(U)) ∩ fk(V )) ⊆ U ∩ fk(V ).

We conclude that, U ∩ fk(V ) 6= φ if and only if fk(U) ∩ V 6= φ
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Remark.. In [4, Theorem 1], Banks et al. proved that if f is transitive and
has a dense set of periodic points then f has sensitive dependence on initial
conditions. Also, if f is weakly transitive and has a dense set of periodic
points then f has a sensitive dependence on initial conditions as it is given
in the next theorem:

Theorem. 4.2.1. Let X be a metric space and let f : X → X be a contin-
uous map. If f is weakly transitive and the periodic points are dense in X
then f has a weakly sensitive dependence on initial conditions.

Proof. Notice that there exists δ0 > 0 such that we can find two periodic
points p1 and p2 where their orbits are disjoint with distance more than δ0.
Let t, s be any positive numbers such that:

d(f t(p1), x) + d(fs(p2), x) ≥ d(f t(p1), f
s(p2)) ≥ δ0

If d(f t(p1), x) ≤ δ0
2

then d(fs(p2), x) ≥ δ0
2

and the other way around.

So there exists a periodic point say p3 such that the distance between the

orbit of p3 and any point x ∈ X is at least
δ0
2

.

d(x, f t(p3)) ≥
δ0
2
, for all t ∈ Z+

Now, suppose δ =
δ0
8

be the sensitivity constant and let x ∈ X and N

be any neighborhood of X. Suppose V = N ∩ Bδ(x) where Bδ(x) = {y ∈
X | d(y, x) < δ}.

So V is a nonempty open set since it is intersection of two open sets and
there exists p ∈ V where p is a periodic point of order n. Set

U =
n⋂
i=0

f−i(Bδ(f
i(p3)))

So U is nonempty open set since it is the intersection of open sets and
p3 ∈ U . But f is transitive so for any two nonempty open set U and V there
exist y ∈ V such that fk(y) ∈ U where k is a nonnegative integer.

Now, Let m ∈ Z+ such that
1

n
+
k

n
≤ m ≤ 1 +

k

n
. Then 1 ≤ mn − k ≤ n

and fmn(p) = p. Also,
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fmn(y) = fmn−k(fk(y)) ∈ fmn−k(U) ⊆ Bδ(fmn−k(p3))

This implies that

d(x, fmn−k(p3)) ≤ d(x, p) + d(p, fmn(y)) + d(fmn(y), fmn−k(p3))

Notice that:

1. d(x, p) < δ, since p ∈ Bδ(x) and p ∈ U.

2. d(fmn(y), fmn−k(p3)) ≤ δ, sincefmn(y) ∈ Bδ(fmn−k(p3))

3. d(x, fmn−k(p3)) ≤
δ0
2

= 4δ

It follows that

4δ ≤ d(p, fmn(y)) + 2δ =⇒ d(p, fmn(y)) > 2δ

This means that

2δ < d(p, fmn(y)) < d(p, fmn(x)) + d(fmn(x), fmn(y))

Then, d(p, fmn(x)) + d(fmn(x), fmn(y)) > 2δ

So d(p, fmn(x)) > δ or d(fmn(x), fmn(y)) > δ

In either of these cases we find a point p and y inN such that d(p, fmn(x)) >
δ or d(fmn(x), fmn(y)) > δ so f has a weakly sensitive dependence on initial
conditions.

Remark.. In [27], it has been proved that on an interval if f is transitive
then f is Devaney chaotic.

Now, if we suppose that X is a connected metric space with dimension 1
the theorem does not hold. See this example.

Example. 4.4. Let X = S1/{ei2πp/q|p, q ∈ Z, q 6= 0} equipped with the
usual arc length metric.

Firstly, S1 is a connected metric space. Consider the map h : [0, 2π] →
R2 where h(x) = (cosx, sinx), since f is continuous map and [0, 2π] is
connected, the image is the unit circle which is connected.
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On the other hand, S1 has no cut points, so the set S1/{ei2πp/q|p, q ∈
Z, q 6= 0} is also connected. Also, the dimension of the set X is 1.

Now, in [2, Example 1] it has been proved that f is transitive, but the set
of periodic points are not dense. This means that f is not chaotic in the
sense of Devaney.

We generalize Lemma 2.1.1 as follows.

Lemma. 4.2.2. Let f : X → X be a continuous map where X is a totally
ordered connected metric space with dimension 1. If U is a subset of X
which contains no periodic points of f and z, fm(z) and fn(z) ∈ U with
0 < m < n, then either z < fm(z) < fn(z) or z > fm(z) > fn(z).

Proof. Suppose not, i.e there exists z ∈ U such that z < fm(z) and fm(z) >
fn(z) where 0 < m < n, where U is a subset that has no periodic points of
f .

Consider the function h(x) = fm(x) this means that z < h(z) and we
claim that z < h(z) < hr+1(z) for all r ∈ Z+ and then the assumption is not
true, so the proof holds. We prove the claim above by induction, assume
z < h(z) < hr(z) to show that z < h(z) < hr+1(z), suppose it is not true
i.e h(z) > hr+1(z) for some r ∈ Z+, let g(x) = hr(x) − x on the interval
[z, h(z)] then by induction hypothesis g(z) = hr(z)− z > 0 and

g(h(z)) = hr(h(z))− h(z)

= hr+1(z)− h(z) < 0

Now, since X is totally ordered connected metric space so we can generalize
the Intermediate Value Theorem and then there exists c ∈ (z, h(z)) such
that g(c) = 0 so hr(z) = z and then f rm(z) = z is a periodic point in U .

On the other hand let r = n−m > 0 then z < h(n−m)m(z) < fm(z) since
fn−m(fm(z)) < fm(z).

Now, consider the function k(x) = f (n−m)m(x)−x on the interval [z, fm(z)]
then k(z) > 0 and k(fm(z)) < 0. Again by the Intermediate Value Theorem
there exists t ∈ (z, fm(z)) such that f (n−m)m(t) = t, this means that there
is a periodic point t in U which contradicts the assumption.

Then, we consider the generalization of Theorem 2.1.2 as follows.
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Proposition. 4.2.1. Let f : X → X be a continuous map where X is a
totally ordered connected metric space with dimension 1. If f is transitive
then the set of periodic points of f is dense and f has a sensitive dependence
on initial condition.

Proof. Suppose that f is transitive. So by the results in Theorem 2.1.1 it
suffices to show that the periodic points are dense in X.

Assume not, there exists open set U ⊆ X such that U has no periodic
points. Let x ∈ U .

Let N be an open neighborhood of x such that N ⊂ U and let E be an
open set in U/N . Since f is transitive, so for any two nonempty sets U
and E, there exists y ∈ U such that fm(y) ∈ E, where m is a nonnegative
integer. Since U has no periodic points so y 6= fm(y).

Let ε = d(y, fm(y)) and let U ′ = {x|d(x, y) < ε/3} be a neighborhood of
y, V = {z|d(z, fm(y)) < ε/3} be a neighborhood of fm(y) then U ′

⋂
V = φ.

Now, f is continuous then fm is also continuous and so for any neighborhood
V of fm(y) in I there exists a neighborhood U of y in I such that fm(U) ⊆ V .
Consider two cases

Case 1: If U ⊆ U ′.

Then U
⋂
fm(U) = φ. Again, f is transitive, so there exists z ∈ U

such that fn(z) ∈ U , where n > m. Finally, there exists 0 < m < n and
z, fn(z) ∈ U , but fm(z) /∈ U , so this contradicts the lemma.

Case 2: If U ′ ⊆ U.

Then U ′
⋂
fm(U) = φ. Again, f is transitive, so there exists z ∈ U ′

such that fn(z) ∈ U ′, where n > m. Finally, there exists 0 < m < n and
z, fn(z) ∈ U ′, but since z ∈ U so fm(z) ∈ fm(U) and U ′

⋂
fm(U) = φ so

fm(z) /∈ U ′, and this contradicts Lemma 4.2.2.

We propose the following definition of chaos.

Definition. 4.2.3. Let X be a metric space, f : X → X be a continuous
map, we say f is chaotic on X if:
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1. f is weakly transitive.

2. The set of periodic points is dense.

3. f is weakly sensitive.

In our paper [16] we present and discuss this new definition of chaos.
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5 Building Hash Functions Using Chaotic Func-
tions

5.1 Basics

Hashing has been a very significant field in computer science for the last
few decades. Hash functions were generally developed to compress an input
string into a shorter one. Hashing gained extensive interest of its application
in computer security systems. In this section we review the basic concepts
behind hash functions, their applications and construction [19], [25].

5.1.1 Definition of a Hash Function

A hash function H is an algorithm that translates a variable-length message
M into a fixed-length hash value h = H(M). Mathematically, H : M → Y ,
where H is a map from the message M to the hash value Y . Figure 3 shows
how a hash function is applied to an input message. For every input message
a hash value of size 3-digits is computed. One interesting property of a hash
function is its sensitivity to slight changes in input messages. In figure 3,
the change of the capital letter ’A’ in the first message to small case ’a’ in
the second message led to a significant change in the computed hash value
[25].

Figure 3: Example of hash function

Hash functions have a wide range of applications, two main categories:
Security applications and Non-Security applications. Non-Security appli-
cations include building hash tables for database indexing, error detection,
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and Identity generation. Security applications include message authenti-
cation, digital signature generation, data verification, and data encryption
in security systems. In this section we consider hash functions for security
applications, and more specifically, a type of hash functions used in data
security systems which is referred to as cryptographic hash function.

The majority of cryptographic hashing algorithms partition a message
into blocks of n-bits, then each block is manipulated bit by bit using bit-
wise operations. Figure 4 depicts a simple example of a cryptographic hash
function. The message is partitioned into 16-bit blocks and the algorithm
uses a 16-bit secret key. The algorithm normally starts from an initial hash
value and iteratively applies the exclusive OR (XOR) function on the three
inputs: message block Mi, secret key K, and intermediate hash value hi.
The XOR function is a bitwise function takes as input a sequence of binary
digits, if the number of digits equal ’1’ are odd it returns ’1’, otherwise it
returns ’0’. For example, XOR(“001011”) = 1, and XOR(“000011”) = 0.
After processing all the message blocks, a 16-bit hash value is generated.
It is obvious that a hash function is a many-to-one function, i.e. there are
multiple messages M that produce the same hash value h. Before looking at

Figure 4: A simple example of a hash function

some properties of hash functions, let us consider the following definitions.

Definition. 5.1.1. A function f : {0, 1} → {0, 1} is one-way if f can be
computed by a polynomial time algorithm, but for every randomized algo-
rithm A that runs in time polynomial in n, every polynomial p(n), and all
sufficiently large n

Pr[f(A(f(x))) = f(x)] <
1

p(n)

Where the probability is over the choice of x from the uniform distribution
on {0, 1}, and the randomness of A. Informally, a one-way function is a
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function that is easy to compute on every input, but hard to invert given the
image of a random input.

Definition. 5.1.2. Suppose the random variable X can assume k different
values. Suppose also that the P (X = xk) is constant. Such that,

P (X = xk) = 1/k

Then X is said to be uniformly distriputed.

The perfect cryptographic hash function must fulfill the following main
properties:

a The computation of the hash value is simple and easy to apply for any
given message.

b Applying the function to a large set of inputs will produce outputs that
are evenly distributed and apparently random.

c A cryptographic hash function should be sensitive to any tiny variation
in the message. A change to any bit or bits in the message results, with
high probability, in a significant change to the hash code.

d A cryptographic hash function is a one-way function. In other words,
given a hash value it is infeasible to generate the source message.

e It is extremely difficult to find two different messages that have the same
hash value.

5.1.2 Applications and Security Requirements

Cryptographic hash functions have a wide range of applications especially in
networks security and Internet protocols. To understand the requirements
of cryptographic hash functions and their security implications, we take a
look at few of its applications.

1. Message Authentication

Message authentication is a service that assures the integrity of a
message traveling between two ends; a sender and a receiver. The
purpose of message authentication is to detect any modification on
the message mainly by an attacker.
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Figure 5 describes how a hash function can be used for message
authentication. For example, Alice sends a message M to Bob and
Bob wants to be sure that the received message is from Alice and
not from a third party. Alice and Bob will share a secret K, Alice
will compute the hash value of the message using the secret key, and
send both the message and the hash value to Bob. Bob will use the
secret key to re-compute the hash value of the received message, and
compare it to the received hash value if they are the same then the
message is authentic and generated by Alice, otherwise the message
will not be authentic. A third party who intercepts the message and
the hash value cannot change the message and the hash value without
any knowledge of the secret key and the hash function H.

Figure 5: An example of using hash function H for message M authentica-
tion

Commonly, the above method is known as Message Authentication
Code (MAC) or keyed hash function. If a secret key is not to be used,
some kind of secrecy around the hash function is necessary [25].

2. Password Verification

Another important application of hash functions is password verifi-
cation. A hash function is used to create a password file that stores
only the hash value of each password. The password file is kept safe
on the server. Now instead of sending the password over the network
link, the hash value of the password is computed and sent to the server,
which compares it with the hash value stored in the password file to
verify the password correctness.

3. Security Requirements
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For a cryptographic hash function to be useful in a security system
it must satisfy few security requirements. Before proceeding in the
security requirements of cryptographic hash functions we first define
few terms.

Pre-image. For a hash value h = H(x), we call x the pre-image of
h. In other words, a pre-image x is the original data block whose hash
value is h, computed using the function H. A hash function H is a
many-to-one mapping, as so, for any given hash value h, there will be
multiple pre-images. A collision happens if we have two non-equal pre-
images x, y and H(x) = H(y). Collisions are undesirable phenomena
in cryptographic hash functions. An attacker is a person (or program)
that tries to break the hash function. Several types of attacks can be
conducted by an attacker:

. Given the message x, the attacker tries to find a message y 6= x with
the same hash value h. This attack is known as second pre-image
attack.

. Given a hash value h, the attacker can find a message x that produces
the hash value h. This attack is known as pre-image attack.

. For a given cryptographic hash function H, the attacker tries to find
two messages; x, and y, where x 6= y and H(x) = H(y). A well
known attack of this kind is the birthday attack.

A concern can arises when designing a cryptographic hash function
is that how we make it impossible or at least too difficult for the
attacker who wants to break the hash function. To ensure security, a
secure hash function must satisfy the following conditions:

(a) High Sensitivity to tiny variations in the message bits. A sensi-
tive function to initial values (i.e. initial message) will produce
significantly different results for very small changes in the initial
value.

(b) Pre-image resistance: For a hash value h, it must be infeasible
to find any message m with the hash value h = H(m). This
condition is a result of the one-way property of the hash function.
Functions that do not fulfill this property are weak against pre-
image attacks.
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(c) Second pre-image resistance. For a message x it is too difficult
to find a message y 6= x such that H(x) = H(y). Functions that
miss this property are vulnerable to second pre-image attacks.
This property is related to the randomness and sensitivity of the
hash function.

(d) Collision Resistance. A collision occur if two messages x, and y
are found to have the same hash value. Such a pair of messages
is known as cryptographic hash collision.

The Sensitivity property is needed to elude an attacker who tries
to find two messages with the same hash value. A hash function that
maps two messages x and x + δ into the hash values h, and h + δ
respectively, where δ is the amount of variation in the message bits,
and h is n-bit hash value, is more likely to be broken by an attacker,
because it simplifies the search process for message y 6= x while both
has the same hash value h. On the other hand, if changing one or two
bits in the message bits produces significant changes in the hash value,
the search space expands to 2n. and for large n, e.g. 64 or larger, it
becomes too expensive and hard to test each message in the search
space.

5.1.3 Construction of Hash Functions

A hash function operates on arbitrary length message and produces a fixed
length n. To do so, we have to partition the input message into a set of blocks
of fixed length r, then we apply a one-way compression function sequentially
on each message block. The length of the message does not need to be
divisible by r. Thus some message preprocessing and padding is needed.
This type of hash functions is called iterated functions, and most of the
widely used cryptographic hash functions are built using iterated functions.
Figure 6 depicts the structure of a hash function. One can summarize the
hashing steps as follows:

a. Message Preprocessing: Given an arbitrary length message M of length
l; the message is padded and extended to length (l + p) where (l +
p) mod r = 0; i.e. the extended message M ′ length is multiple of r.
Then the message is broken into a sequence of blocks mi : i = 1, , N each
of length r.

b. An additional block represents the original message length l is added to
the extended message M ′.
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c. After finishing the message preprocessing: a compression function f is
applied iteratively on the sequence of message blocks starting from an
initial value (IV) for the hash value. The of the compression function at
each step is used as input, in addition to a message block, to the subse-
quent function iteration. The of the final function iteration is considered
the final hash value.

d. The final hash value might be processed further by a transfer function G,
to produce a new hash value with better shape.

h0 = IV

hi = f(mi, hi−1,K), i = 1, . . . N + 1

The of the hash function H is the last value hN+1. The secret key K in
the hash function can be used as initial value for h0, or as input to the
compression function f .

This kind of construction using iterated functions is also called Merkle-
Damgrad construction. Merkle and Damgrad proved independently, that
if a collision resistant compression function f is used, then the above
construction of hash function H : KM → h guarantees that the hash
function H is also collision resistant, and any collision in H has its origin
as collision in the compression function f .

The most widely used cryptographic hash functions MD5 and SHA
follow the structure of Merkle-Damgrad construction of hash functions.
We will take a close look at the SHA-2 hash function of the SHA hash
functions family, to better understand the hash functions construction.

Figure 6: The Merkle-Damgrad hash construction[25]
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Secure Hash Function (SHA) is a family of hash functions published
by the American NIST (National Institute of Standards and Technol-
ogy)[24]. The first two versions SHA-1 and SHA-2 have been broken and
no longer used in security systems. SHA-2 succeeded SHA-1 in 2010.
SHA-2 has multiple versions differ only in the size of the generated hash
value as follows: SHA-224, SHA-256, SHA-384, and SHA-512. We will
discuss the SHA-512 hash function as it is the most secure in the family,
and its structure is similar to the rest of the SHA-2 functions.

SHA-512 operates on a message with maximum length 2128 bits and
computes a hash value of size 512-bits. The input message is padded
and extended with the original message length then divided into 1024-
bits blocks. A buffer of 8 registers (a, b, c, d, e, f, g, h) is initialized
to represent h0. After message padding and initializing the hash value
h0, the hash algorithm operates on the message blocks sequentially in a
similar manner to Merkle-Damgrad construction.

The compression function used by SHA-512 consists of 80 rounds as
depicted in figure 7. The first round takes as input a message word W0,
and a key K0, and the from processing the previous message block (hi−1).
The of each round is used as input for the next round. The of the last
round (round 80) is added to the first round input hash value hi−1. After
all 1024-bit blocks are processed, the is the 512-bit hash value of the last
block processed. We can summarize the behavior of the SHA-512 for N
blocks message as follows:

h0 = IV,

hi = SUM(hi−1, abcdefghi), i = 1, . . . N + 1

h = hN

5.2 Chaos Theory as basis for Hash Function Construction

Chaos theory is an established field in mathematics with applications in a
wide range of scientific fields such as physics, biology, economics, engineer-
ing, etc. Chaos theory studies dynamical systems behavior and describes
their main characteristics such as: sensitivity to tiny changes in initial con-
ditions, random-like behavior, and the one-way property. Due to these prop-
erties chaotic systems have become a very good candidate for use in the field
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Figure 7: SHA-512 Processing of a Single 1024-Bit Block [25]

of cryptography. In this section we study the various types of chaotic maps,
and their use in cryptographic algorithms, more specifically constructing
hash functions.

Conventional hash functions as MD4, MD5, SHA-1, and SHA-2 use Merkle-
Damgrad construction. The used iterated functions are realized through
complicated methods based on logical XOR operations, bit swapping, and
multi-round iterations. Research in the last few years showed several defects
and weaknesses in the conventional hash functions. As a result, research in
the chaos-based hash functions exhibit an attractive design direction.

5.2.1 Prior Work

Chaotic maps inhibit a unique set of properties like high sensitivity to
initial conditions, one-way mapping, and randomness. Such properties are
crucial to secure hash function applications, as a result chaotic maps have
been a major research area for constructing novel and secure hash functions.
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In recent years, there has been a considerable amount of research in the
construction of cryptographic hash functions based on chaotic maps. Re-
search in this field considered a variety of chaotic maps: logistic map [2],
[27], one- and two-dimensional piecewise linear maps [2], [16], Nonlinear
chaotic maps, and high-dimensional chaotic maps. Few works investigated
the use of other types of chaotic systems, like hyper chaotic map, chaotic
neural networks, and chaotic iterations. in what follows, we discuss research
efforts used the Logistic map and Piecewise linear maps.

1. Chaotic Logistic Map
The one-dimensional Logistic chaotic map is given by:

f(x) = r ∗ x(1− x), 0 ≤ x ≤ 1

Where r is a control parameter used to obtain the preferable behavior
of the chaotic map. For r = 4, the logistic map exhibits a perfect
chaotic behavior.

Figure 8: Bifurcation diagram of the Logistic map [10]

The chaotic logistic map attracted a lot of attention and research,
because of its simplicity and interesting properties. Researchers pro-
posed a variety of cryptographic algorithms either for hashing or en-
cryption based on the logistic map. One example of such research is
the work of R. Bose [10]. In his work, he suggested a simple hash
function for message encryption. The hash function uses the chaotic
logistic map with parameter r = 4. The proposed hash function works
as follows:
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(a) Start from an initial value x0, the logistic map is iterated for N
iterations to produce a value xN .

(b) The fraction value of xN is used to obtain a 64-bit key.

(c) The logistic map is iterated continuously after that, and after
every M iterations, the map is used to obtain a 64-bit key as in
(ii).
Each generated 64-bit key is used in encrypting a 64-bit message
block.

To work, the algorithm requires determining first few arguments:
the initial value x0, number of iterations N,M , and sensitivity of the
system. The sensitivity of the system is measured as the difference in
the initial value x0 that produces a difference > 0.0625 after N itera-
tions of the logistic map, according to R. Bose, the number of logistic
map iterations N depends on the system sensitivity. For example, R.
Bose [10] gives a table in which for sensitivity of order 10−30, the num-
ber of iterations N should be equal to 100, and for sensitivity 10−19,
N = 59. The value of M is decided by the key size, R. Bose used
M = 60 for 64-bit key.

In addition to building hash functions, the logistic map is also used
to encrypt messages. The work done by M.S Baptista [5] suggested
an encryption method using the logistic map. The map interval [0, 1]
is divided into S ε-intervals, and each character is assigned its own
ε-interval. The encryption algorithm is quiet simple; let us see how a
message like ”hi” is encrypted:

(a) Given an initial value x0, the logistic map is iterated until we
reach the interval of the character ’h’, then the character is coded
by the number of iterations required to reach its interval.

(b) Continue to iterate the map until we reach the interval of the
character ’i’, then we code the letter ’i’ with the number of iter-
ations required to reach its interval from the point we reached in
the interval of ’h’.

(c) Step 2 is repeated for every character from the point the previous
character is reached. The method proposed by M.S. Baptista is
simple and easy to apply, the initial value x0 and parameter p
are the secret keys of algorithm. But it is susceptible to hackers’
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attacks, if a hacker succeeded in discovering the secret key (i.e.
initial value x0) he can easily decrypt the message.

While the work done on the logistic map provided experimental
proofs of feasibility, and resistance to attack scenarios, a thorough
analysis of the logistic map reveals few weaknesses for the use in se-
curity systems. First, the invariant density of the logistic map is not
uniform, which conflicts with the need for uniform hash functions,
otherwise a collision attack will break the hash function quickly. Only
when the map parameter r = 4, the logistic map exhibits perfect
chaotic behavior; the dynamical properties of the logistic map are dif-
ferent if the map parameter r is different, which may allow an attacker
to collect useful information to reduce the attack complexity. As a re-
sult, the logistic map is not a good candidate for high security system
[19].
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2. Piecewise Linear Chaotic Maps

Piecewise linear chaotic maps (PWLCM) stand as strong competi-
tors to the logistic map. Because of their perfect properties, like uni-
formity, mixing and ergodicity, and ease of realization by software and
hardware. Such a set of properties make PWLCMs an attractive choice
for a lot of researchers. One dimensional piecewise tent map is given by

f(x) =

{
x/α; 0 ≤ x ≤ α
(1− x)/(1− α) α < x ≤ 1

with a control parameter α in the interval (0, 1). Another piecewise
linear chaotic map commonly used is given by

f(x) =


x/β; 0 ≤ x < β

(x− β)/(0.5− β); β ≤ x < 0.5

(1− β − x)/(0.5− β); 0.5 ≤ x < 1− β
(1− x)/β 1− β ≤ x ≤ 1

The control parameter β is in the interval (0,0.5) and ensures that the
map runs in a chaotic state.

A work done by L. Yantao [18] demonstrates a method for using the
tent map cascaded with the piecewise linear map given above to build
a hash function. The proposed hash function processes n message
blocks Mi in parallel, each block is 1024-bits divided into 128 bytes
(8-bit word mij). The hash function construction proceeds as follows

(i) Starting from mi1 as initial value, for every i = 1, 2 . . . n, the tent
map is iterated bmij × j

128c times, with α = ( in ×
j

128)/2.

(ii) The of the tent map iterations is used as initial value for the
piecewise linear map above. The map is iterated bmij×(1− j

128)c
times, with β = α/2.

(iii) The algorithm now repeats the steps (i) and (ii) with the of the
piecewise linear map in (ii) is used as initial value for the tent
map iterations in step (ii).
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For each mij , the of the piecewise linear map is approximated to the
nearest integer, which is either 0 or 1. The 0s and 1s gathered from the
message block represent a 128-bit sequence. The sequences from all n
message blocks are XORed to generate the final 128-bit hash value.

In a subsequent work [20], L. Yantao suggests a simpler approach
using only the tent map. However, the suggested function operates
on the message blocks Mi sequentially in a similar manner to Merkle-
Damgrad hash construction discussed in the previous section.

5.3 Using the Chaotic Double Map

The double map is given by:

f(x) =

{
2x; 0 ≤ x ≤ 1

2

2x− 1 1
2 < x ≤ 1

The Double map is a very simple function yet it exhibits a chaotic be-
havior. In this section we demonstrate how the double map can be used
to construct a hash function and message encryption. In [15], it is proved
that f is topologically transitive, has a dense set of preiodic points and has
sensitive dependence on initial condition, we give the proofs here

1. f is topologically transitive. It suffices to show that f has a dense
orbit, so let z =

∑∞
j=1

cj
2j

where cj is as follow

01
(1-block)

, 00011011
(2-block)

, 000001010011100101110111
(3-block)

.

We claim that O(z) = [0, 1]. Let x =
∑∞

j=1
aj
2j

be an arbitrary point on

the interval [0, 1], and let δ > 0 be given. Then there existm ∈ Z+ such
that 1

2m < δ. Now the string of a1, a2, . . . , am must appear as one of the
m-blocks in the binary expansion of z. Hence there exists k ∈ Z+ such
that fk(z) =

∑∞
i=1

ci+k

2i
where a1 = ck+1, a2 = ck+2, . . . , am = ck+m.

This implies that

|fk(z)− x| =
∣∣∣ ∞∑
j=m+1

aj
2j
−

∞∑
i=m+1

ci+k
2i

∣∣∣ ≤ ∞∑
i=m+1

1

2i

=
1

2m
< δ
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So we conclude that O(z) = [0, 1].

2. P (g) = [0, 1]. Let x =
∑∞

j=1
aj
2j

where aj = 0, 1. Then f(x) = a1 +∑∞
j=2

aj
2j−1 (mod 1) =

∑∞
j=2

aj
2j−1 =

∑∞
i=1

ai
2i

.

Note that

fn(x) = fn

( ∞∑
i=1

ai
2i

)
=
∞∑
i=1

ai+n
2i

Moreover, x is a periodic point of period n if and only if fn(x) = x
and this is equivalent to ai+n = ai, for every i.

We know that there exists m ∈ Z+ such that 1
2m < δ Ṅow, let

y =
∑∞

i=1
bi
2i

be a periodic point of period m, where b1, b2, . . . , bm
repeats and b1 = a1, b2 = a2, . . . , bm = am. Then

|x− y| =
∣∣∣ ∞∑
j=m+1

aj
2j
−

∞∑
j=m+1

aj
2j

∣∣∣ ≤ ∞∑
j=m+1

1

2j

=
1

2m
< δ

Hence, the set of periodic points are dense in [0, 1]

3. It remains to show that f has sensitive dependence on initial condi-
tions. By Proposition 2.1.1

|f ′(x)| = 2, for all x ∈ [0, 1].

This means that f has a sensitive dependence on initial conditions.

5.3.1 Suggested Hash function

In this section we developed a new method for constructing hash functions
using the Double map. We adapted a construction model similar to that used
by L. Yanato [18], which is a hybrid of the sequential Merkle-Damgrad model
and the parallel processing model. This model achieves better performance,
yet maintains strong security level. The suggested hash function uses a 64-
bit secret key (K) and produces a 64-bit hash value (H). Figure 9 depicts
the hash function data flow:
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(a) The hashing function basic structure, Mi is a 64-bit message block, Hi is a
64-bit intermediate hash value, and H is the 64-bit Hash value.

(b) The message blocks processor. mij is a message block character. hij is an
intermediate 8-bit hash value.

Figure 9: Double Map based Hash Function

1. We first partition the message into a set of blocks M0,M1, . . .Mn,
where each message block is 64-bits wide, i.e. 8 characters. If the
message length is not multiple of 64-bit, we pad the message with a
sequence: ”10101010” until it is multiple of 64-bits.

2. Partition each message block Mi, into 8-bit words mij (one character).
Each message block consists of 8 such words.

3. Each message block is processed independently from other blocks and
a 64-bit temporary hash Hi value is computed from message block Mi.

4. The temporary hash values Hi are XORed to generate the final Hash
value H.

The processing of a single Message block is done as follows:

65



1. Each 8-bit word is XORed with an 8-bit secret key word and the of the
last Double map iteration (or 0 for the first 8-bit word in the message
block). The XOR operation produces an 8-bit word.

2. Normalize the 8-bit word of the XOR operation such that it represents
a value in the interval [0, 1]. We divide the 8-bit word with the decimal
number 255.0.

3. Iterate the Double map using the normalized value for N iterations.

4. From the fraction of the value of the Double map last iteration, we
extract the most significant 8-bits. Those 8-bits represent a sub-hash
value hij .

5. The concatenation of the sub-hash values computed from the 8 char-
acters in the message block represent the 64-bit temporary hash value
of each message block Hi.

To determine the number of Double Map iterations (N) we have to de-
termine the level of sensitivity we want to achieve. For example, if we use
a 16-bit word to represent a decimal value in the interval [0, 1] as initial
value to the Double Map, then changing 1-bit corresponds to a minimum
difference 10−5 in the initial value. i.e. If we changed the rightmost bit in
the binary number it corresponds to 2−16 = 1.53 ∗ 10−5 difference in the
initial value. According to Table 1, for such sensitivity level the required
number of iterations (N) is 12.

In the suggested hash function, we use 8-bits to represent the decimal
initial value of the Double Map, as a result, changing a 1-bit out of the
8-bits corresponds to sensitivity approximately equal to 3 ∗ 10−3, hence,
according to Table 1 the required number of iterations equals 6.

5.3.2 Experiments

To demonstrate the efficiency of the suggested hash function, we did a set of
experiments as follows. Appendix A lists the C source code of the developed
hash function. Original Message text:

”Department of Mathematics, Birzeit University”

The computed hash value for this message is (in hexadecimal format):

58BD083954517FD8
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Table 1: Analysis of the number of Double map iterations versus initial value
sensitivity.

Sensitivity Corresponding
word size (in bits)

Number of map iterations (N)
to achieve difference > 0.08

10−2 6 2

10−3 9 6

10−4 12 9

10−5 16 12

10−10 32 32

10−20 64 64

10−30 96 98

Appendix B lists the steps of computing the hash value for the message
above.

In the following experiments we study the effect of changing the message
characters, message length, and secret key (K) on the computed hash value.
We try to see how tiny and trivial changes in the original message or the
secret key affect the proposed hashing algorithm efficiency.

1. Change in Message Characters

In this set of experiments we consider keeping the length of the mes-
sage and the secret key unchanged and only test the effect of changes
in the message characters.

Test 1 Consider replacing the character ’,’ in the original text with
the character ’/’, the new hash value is:

98BE0409945273D8

This change in characters in the original text corresponds to change
in two binary bits in the original text, however, the generated hash
values differs 14 binary bits from the 64-bits of the hash value.
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Test 2 Another example of tiny change in the original text is a
misspelling of the ”Birzeit” word into ”Birziet”, i.e. swapping the
characters ’e’ and ’i’ in original word. This change produces the hash
value:

A8BE0409945273E8

The generated hash value differs 18 binary bits from the original text
hash value.

Test 3 Another moderate change in the original text we could con-
sider is swapping the positions of the phrases ”Birzeit University” and
”Department of Mathematics”:

”Birzeit University, Department of Mathematics”

This change produces the following hash value:

DF7754DDA5226F58

This hash value differs 28 binary bits from the original text hash value.

2. Change in Message Length

Test 1 Another type of change to consider is the length of the
message, consider a tiny change like dropping the ’,’ character after
”Mathematics” from the original text. The generated hash value will
be:

2ED569CD7B3C6AA8

The generated hash value differs 32-bits out of 64-bits (length of hash
value) from the original text hash value.

Test 2 Another example is given by adding a space character to the
start of the original text before the word ”Department”, the generated
hash value is

362681B6DAAE9F1D

The generated hash value differs 37-bits out of 64-bits from the original
text hash value.
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Test 3 Let us see how a major addition to the message text can
affect the computed hash value. Consider adding the phrase ”College
of Science,” after ”Department of Mathematics”, the computed hash
value will be

6793613F22A48670

The computed hash value differs 36-bits out of 64-bits in the original
text hash value.

3. Change in Secret Key

We now consider how the suggested hash function reacts to changes
in the secret key (K) while the original message text is kept unchanged.
In the above experiments, the used secret key was an eight character
string given as follow: ”ABCDEFGH”.

Test 1 Consider changing the first character of the Key string from
’A’ capital to ’a’ small letter. The computed hash value is

A742F7C6ABAE7FD8

The computed hash value differs in 48-bits out of 64-bits of the original
text with the original key hash value.
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4. Completely Different Messages

What if we have completely different message, how much the hash
values of two completely different messages will differ? Let us consider
the message

”IT Division, Jawwal Company, Ramallah”

The hash value of the message above is

9BD1D9B9964E7E58

The computed hash value of the above message differs in 23-bits out of
64-bits of the original message ”Department of Mathematics, Birzeit
University”.

The proposed hashing function has several attractive features:

1. The Processing of the whole message is parallelized by making message
blocks processed independently. This will improve the performance of
the algorithm.

2. The computations per single Double map iteration are quite simple:
multiplications by 2 can be converted into the cheaper addition oper-
ation, instead the more expensive multiplication operation.

3. The number of the Double map iterations is few which reduces the
computational cost.

The proposed hashing algorithm provides a moderate level of security,
with minimal computational complexities. There are two ways to strengthen
the security level; increasing the word size of the map initial value (e.g.
from 6-bits to 32-bits) to increase the sensitivity level. The second way is
to increase the length of the hash value (e.g. from 64-bits to 128- or 256-
bits). We can increase the size of the hash value by increasing the size of the
message block. For example when increasing the size of hash value from 64-
bits to 128-bits, the size of the message block will increase from 8 characters
to 16 characters.
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A Hashing Algorithm Code

Here we list the C source code implementing the hash function that we
developed in section 5.3.1.

//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−//
/∗

This f u n c t i o n t a k e s as input a message and a key ,
and o p e r a t e s on them to compute the hash v a l u e .

∗/
unsigned long long int hash (unsigned char key [ ] ,

unsigned char ∗ message ){

// Compute padded message l e n g t h
int l en = s t r l e n ( ( ( char ∗ ) ( message ) ) ) ;

int s l e n = len ;
int add = ( s l e n%8 > 0)? 8 − s l e n%8 : 0 ;

s l e n += add ;

// a l l o c a t e padded message memory
unsigned char ∗ PM = new unsigned char [ s l e n ] ;

// Message padding
for ( int i = 0 ; i < l en ; i++) PM[ i ] = message [ i ] ;
for ( int i = l en ; i < s l e n ; i++) PM[ i ] = 0xAA;

int N = s l e n /8 ;
int M = 8 ;

unsigned long long int ∗ hvs = new unsigned long long int [N ] ;

// S t a r t i t e r a t i v e l y p r o c e s s i n g o f message b l o c k s
for ( int i = 0 ; i < N; i++)
{

hvs [ i ] = 0 ;
unsigned char tkey = 0 ;
for ( int j = 0 ; j < M; j++)
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{
unsigned char byte = PM[8∗ i+j ] ;
// Xor wi th key
byte = byte ˆ key [ j ] ˆ tkey ;

f loat i v = ( byte & 0xFF ) / 2 5 5 . 0 ;

// i t e r a t e map
i v = iterateMap ( iv , 6 ) ;

unsigned char h0 = (unsigned char ) ( i v ∗ 2 5 5 ) ;

tkey = h0 ;

hvs [ i ] = ( hvs [ i ] << 8) | h0 ;
}

}

// xor hvs
unsigned long long HVal = 0 ;

for ( int i = 0 ; i < N; i++)
{

HVal = HVal ˆ hvs [ i ] ;
}

return HVal ;
}

//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−//
// This f u n c t i o n computes the Double Map

f loat DoubleChaoticMap ( f loat x ){

i f ( x < 0 .0 ) return 0 .000000000000 ;
else i f ( x < 0 .5 ) return 2.000000000000∗x ;
else i f ( x < 1 .0 ) return (2 .000000000000∗x − 1 .000000000000) ;
else return 0 .000000000000 ;

return 0 . 0 ;
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}

//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−//
/∗

This f u n c t i o n t a k e s an i n i t i a l v a l u e ’ x ’ and number o f
i t e r a t i o n s ” n i t e r s ” , then i t e r a t e s the Double Map.

∗/

f loat i terateMap ( f loat x , int n i t e r s ){

f loat y = x ;
for ( int j = 0 ; j < n i t e r s ; j++)
{

y = DoubleChaoticMap ( y ) ;
}
return y ;

}

//
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B Hashing Algorithm Example

Process the Message : ”Department o f Mathematics , B i r z e i t Un ive r s i ty ”

message l ength = 360−b i t s , hence , add 24−b i t s to the message to
make message l ength mul t ip l e o f 64−b i t s ,
then compute the number o f message b locks = 6 .

L i s t o f message b locks : {”Departme” , ”nt o f Ma” , ” thematic ” ,
”s , B i rze ” , ” i t Unive” , ” r s i t y ”}

Used Sec r e t Key = EFGHABCD

Star t Proce s s ing o f the message . . .

p roce s s the message block : ”Departme”

XOR( mij , key [ i ] , IV) Double Map I t e r a t i o n Output
−−−−−−−−−−−−−−−−−−−− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
XOR( ’D ’ , E, 00) = 01 , 0 .25098 −− to Hex −−> 40
XOR( ’ e ’ , F , 40) = 63 , 0 .847059 −− to Hex −−> d8
XOR( ’p ’ , G, d8 ) = ef , 0 .984314 −− to Hex −−> fb
XOR( ’ a ’ , H, fb ) = d2 , 0 .705883 −− to Hex −−> b4
XOR( ’ r ’ , A, b4 ) = 87 , 0 .882355 −− to Hex −−> e1
XOR( ’ t ’ , B, e1 ) = d7 , 0 .960785 −− to Hex −−> f 5
XOR( ’m’ , C, f 5 ) = db , 0 .964706 −− to Hex −−> f 6
XOR( ’ e ’ , D, f 6 ) = d7 , 0 .960785 −− to Hex −−> f 5

p roce s s the message block : ”nt o f Ma”

XOR( mij , key [ i ] , IV) Double Map I t e r a t i o n Output
−−−−−−−−−−−−−−−−−−−− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
XOR( ’n ’ , E, 00) = 2b , 0 .792157 −− to Hex −−> ca
XOR( ’ t ’ , F , ca ) = f8 , 0 .243137 −− to Hex −−> 3e
XOR( ’ ’ , G, 3e ) = 59 , 0 .337255 −− to Hex −−> 56
XOR( ’ o ’ , H, 56) = 71 , 0 .360785 −− to Hex −−> 5c
XOR( ’ f ’ , A, 5c ) = 7b , 0 .870588 −− to Hex −−> de
XOR( ’ ’ , B, de ) = bc , 0 .184315 −− to Hex −−> 2 f
XOR( ’M’ , C, 2 f ) = 21 , 0 .282353 −− to Hex −−> 48
XOR( ’ a ’ , D, 48) = 6d , 0 .356863 −− to Hex −−> 5b

proce s s the message block : ” thematic ”
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XOR( mij , key [ i ] , IV) Double Map I t e r a t i o n Output
−−−−−−−−−−−−−−−−−−−− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
XOR( ’ t ’ , E, 00) = 31 , 0 .298039 −− to Hex −−> 4c
XOR( ’h ’ , F , 4c ) = 62 , 0 .596079 −− to Hex −−> 98
XOR( ’ e ’ , G, 98) = ba , 0 .682354 −− to Hex −−> ae
XOR( ’m’ , H, ae ) = 8b , 0 .886276 −− to Hex −−> e2
XOR( ’ a ’ , A, e2 ) = c2 , 0 .690197 −− to Hex −−> b0
XOR( ’ t ’ , B, b0 ) = 86 , 0 .631374 −− to Hex −−> a1
XOR( ’ i ’ , C, a1 ) = 8b , 0 .886276 −− to Hex −−> e2
XOR( ’ c ’ , D, e2 ) = c5 , 0 .443138 −− to Hex −−> 71

proce s s the message block : ”s , B i rze ”

XOR( mij , key [ i ] , IV) Double Map I t e r a t i o n Output
−−−−−−−−−−−−−−−−−−−− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
XOR( ’ s ’ , E, 00) = 36 , 0 .552941 −− to Hex −−> 8d
XOR( ’ , ’ , F , 8d) = e7 , 0 .976471 −− to Hex −−> f 9
XOR( ’ ’ , G, f 9 ) = 9e , 0 .654903 −− to Hex −−> a7
XOR( ’B ’ , H, a7 ) = ad , 0 .419609 −− to Hex −−> 6b
XOR( ’ i ’ , A, 6b) = 43 , 0 .815687 −− to Hex −−> d0
XOR( ’ r ’ , B, d0 ) = e0 , 0 .219608 −− to Hex −−> 38
XOR( ’ z ’ , C, 38) = 01 , 0 .25098 −− to Hex −−> 40
XOR( ’ e ’ , D, 40) = 61 , 0 .345098 −− to Hex −−> 58

proce s s the message block : ” i t Unive”

XOR( mij , key [ i ] , IV) Double Map I t e r a t i o n Output
−−−−−−−−−−−−−−−−−−−− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
XOR( ’ i ’ , E, 00) = 2c , 0 .043137 −− to Hex −−> 0b
XOR( ’ t ’ , F , 0b) = 39 , 0 .305882 −− to Hex −−> 4e
XOR( ’ ’ , G, 4e ) = 29 , 0 .290196 −− to Hex −−> 4a
XOR( ’U ’ , H, 4a ) = 57 , 0 .835295 −− to Hex −−> d5
XOR( ’n ’ , A, d5 ) = fa , 0 .745098 −− to Hex −−> be
XOR( ’ i ’ , B, be ) = 95 , 0 .39608 −− to Hex −−> 65
XOR( ’ v ’ , C, 65) = 50 , 0 .078432 −− to Hex −−> 14
XOR( ’ e ’ , D, 14) = 35 , 0 .301961 −− to Hex −−> 4d

proce s s the message block : ” r s i t y ”

XOR( mij , key [ i ] , IV) Double Map I t e r a t i o n Output
−−−−−−−−−−−−−−−−−−−− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
XOR( ’ r ’ , E, 00) = 37 , 0 .803922 −− to Hex −−> cd
XOR( ’ s ’ , F , cd ) = f8 , 0 .243137 −− to Hex −−> 3e
XOR( ’ i ’ , G, 3e ) = 10 , 0 .015686 −− to Hex −−> 04
XOR( ’ t ’ , H, 04) = 38 , 0 .054902 −− to Hex −−> 0e
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XOR( ’ y ’ , A, 0e ) = 36 , 0 .552941 −− to Hex −−> 8d
XOR( ’ ’ , B, 8d) = 65 , 0 .34902 −− to Hex −−> 59
XOR( ’ ’ , C, 59) = b0 , 0 .17255 −− to Hex −−> 2c
XOR( ’ ’ , D, 2c ) = c2 , 0 .690197 −− to Hex −−> b0

Generated l i s t o f Temporary Hash va lue s :

40 d8 fbb4e1 f 5 f 6 f 5
ca3e565cde2f485b
4 c98aee2b0a1e271
8 df9a76bd0384058
b4e4ad5be65144d
cd3e040e8d592cb0

Result o f XORing Temporary Hash Values = 8 df7eaba6c7f247a
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